More on Binomial Distribution

Mean and Standard Deviation

Suppose X is a binomial random variable with parameters n and p, so $X \sim B(n, p)$.

- The mean of X is $\mu = np$.
- The standard deviation of X is $\sigma = \sqrt{np(1-p)}$.
- The variance of X is $\sigma^2 = np(1-p)$.

Self Tutor Example 10 A fair die is rolled twelve times and X is the number of sixes that could result. Find the mean and standard deviation of the X-distribution.

A fair die is rolled twelve times and X is the number of sixes that could result. Find the mean and standard deviation of the X-distribution.

This is a binomial distribution with n = ? and p = ? so $X \sim B(?)$.

A fair die is rolled twelve times and X is the number of sixes that could result. Find the mean and standard deviation of the X-distribution.

This is a binomial distribution with n=12 and $p=\frac{1}{6}$, so $X \sim B($

So,
$$\mu = np$$
 and $\sigma = \sqrt{np(1-p)}$ $= ? \times ?$ $= \sqrt{? \times ? \times ?}$

A fair die is rolled twelve times and X is the number of sixes that could result. Find the mean and standard deviation of the X-distribution.

This is a binomial distribution with n=12 and $p=\frac{1}{6}$, so $X \sim B($

So,
$$\mu = np$$
 and $\sigma = \sqrt{np(1-p)}$
$$= 12 \times \frac{1}{6}$$

$$= 2$$

$$= \sqrt{12 \times \frac{1}{6} \times \frac{5}{6}}$$

$$\approx 1.291$$

We expect a six to be rolled 2 times, with standard deviation 1.291.

5% of a batch of batteries are defective. A random sample of 80 batteries is taken with replacement. Find the mean and standard deviation of the number of defective batteries in the sample.

This is a binomial sampling situation with n = ? p = ?

5% of a batch of batteries are defective. A random sample of 80 batteries is taken with replacement. Find the mean and standard deviation of the number of defective batteries in the sample.

This is a binomial sampling situation with n = 80, $p = 5\% = \frac{1}{20}$.

If X is the random variable for the number of defectives, then $X \sim \mathrm{B}(\ ?\)$.

5% of a batch of batteries are defective. A random sample of 80 batteries is taken with replacement. Find the mean and standard deviation of the number of defective batteries in the sample.

This is a binomial sampling situation with n = 80, $p = 5\% = \frac{1}{20}$.

If X is the random variable for the number of defectives, then $X \sim B(80, \frac{1}{20})$.

So,
$$\mu = np$$
 and $\sigma = \sqrt{np(1-p)}$ $= ?$ $?$ $= \sqrt{? \times ? \times ?}$

5% of a batch of batteries are defective. A random sample of 80 batteries is taken with replacement. Find the mean and standard deviation of the number of defective batteries in the sample.

This is a binomial sampling situation with n = 80, $p = 5\% = \frac{1}{20}$.

If X is the random variable for the number of defectives, then $X \sim B(80, \frac{1}{20})$.

So,
$$\mu = np$$
 and $\sigma = \sqrt{np(1-p)}$
 $= 80 \times \frac{1}{20}$
 $= 4$

$$= \sqrt{80 \times \frac{1}{20} \times \frac{19}{20}}$$
 ≈ 1.949

We expect a defective battery 4 times, with standard deviation 1.949.