Comparelo

Some more examples

Well , We're both {ruit :




Let’s say, I'm recording

information about trees for
the Ministry of Forestry.

public class Tree {
private int height;
private int age;
private String type;

public int getHeight()
public int compareTo(Tree t)




Eventually, once | get
the basics out of the
way, I’'m going to need
to make a report.

Someone might

ask, which are
the tallest trees?




iz The B@ig Tree .

©

| O
| =

BCR g The lai-gést tree in the park is this
s . giant Douglas-fir. It is over 800
: V35 5 years old, 76 m tall and 9 m round.
—— —. . e It was ovee 300 years old when

Christopher Columbus came to -
North America in 1492. .

The

5 Leaniné‘ : o £y
ey :Douglas-fir is one of Canada’s oldest
or Fisa A g
56m, living tree species and can !we, to be .

.

: -ov‘er'IIO'_OO years old.

i The Leaning Tower of ‘ Tree age can be determined |

[ | s 3 < P
| . A Pisa, one of Europe’s by counting the number of
fl o . most famous landmarks, rings on a burl or by a core
f is dwarfed by the size; sample from a living tree.

I of the Big Tree.

o 3
T
. s S
3 . N
'
4
*
Ll
h il * Miniatry of Foroats
7 (5o the D Book for mare
A rapnece o
L feedattiey




String max = array[0];
for (inti=0;i<array.length; i++){ Objects, like Strings,

if(array[i].compareTo(max)>0) can't use > or < or ==
to compare them.

max = arrayli]; Objects are too

} complex.

Tree max = array[0];
for (inti=0; i< array.length; i++){ We need to write our
if(array[i].compareTo(max)>0) own method to
max = array[i]; compare them.




Tree a = new Tree(12, 34, “apple”); Tree ¢ = new Tree(11, 6, “willow”);

Tree b = new Tree(10, 12, “banana”); Tree d = new Tree(6, 3, “pine”);

a: height =12 b: height = 10 c: height =11 d: height =6
age =34 age =12 age =6 age =13
type = apple type = banana type = willow type = pine

First, | have to The way | intend to sort them, will

make choices impact how | code compareTo.



Tree a = new Tree(12, 34, “apple”); Tree ¢ = new Tree(11, 6, “willow”);

Tree b = new Tree(10, 12, “banana”); Tree d = new Tree(6, 3, “pine”);

a: height =12 b: height =10 c: height=11 d: height =6
age =34 age =12 age =6 age =3
type = apple type = banana type = willow type = pine

Let’s sort by height.




me.compareTo(them)

Can use the instance Use the accessors and

variables directly the parameter name




& Tree a = new Tree (12, 34, “apple”);
gée_‘) Tree b = new Tree (10, 12, “banana”);
O J a.compareTo(b);
e\ .
public class Tree { b: height = 10
a: height =12 age =12

age = 34 — private int height;

type = apple | private int age;

private String type;
public int getHeight() /

public int compareTo(Tree t)

type = banana

\

}




& Tree a = new Tree (12, 34, “apple”);
g@ Tree b = new Tree (10, 12, “banana”);
@) \}Q\(%@ b.compareTo(a);

public class Tree { b: height = 10
a: height =12 ivate int height: age=12
age =34 private int height, | type = banana

type = apple private int age;

private String type;

™ public int getHeight() |
public int compareTo(Tree t)

}




me.equals(them)

Can use the instance Use the accessors and

variables directly the parameter name




me.equals(them)

public boolean equals (Tree t) {
1f (height == t.getHeight())
return true;
else
return false;



Equals Side of the Sheet

The equals method returns a

[t returns if all of the instance variables match and if they don’t all match.

To testif : : are equal, use ==.

However, to check if are equal, use .equals.

The type of the method is the same as the class. This is because we are comparing our

instance variable to another of the same type as us.

Inside the method, think of the variables as belonging to ME and the parameter, which
uses , as THEM.




Equals Side of the Sheet

The equals method returns a boolean

[t returns if all of the instance variables match and if they don’t all match.

To testif : : are equal, use ==.

However, to check if are equal, use .equals.

The type of the method is the same as the class. This is because we are comparing our

instance variable to another of the same type as us.

Inside the method, think of the variables as belonging to ME and the parameter, which
uses , as THEM.




Equals Side of the Sheet

The equals method returns a boolean
[t returns _LIUE  ifall of the instance variables match and fa | SE€ _ifthey don’t all match.

To testif : : are equal, use ==.
However, to check if are equal, use .equals.
The type of the method is the same as the class. This is because we are comparing our

instance variable to another of the same type as us.

Inside the method, think of the variables as belonging to ME and the parameter, which
uses , as THEM.




Equals Side of the Sheet

The equals method returns a boolean

[t returns _LIUE  ifall of the instance variables match and fa | SE€ _ifthey don’t all match.

Totestif INT double _char  are equal, use ==.
However, to check if Stri NE  areequal, use .equals.

The type of the method is the same as the class. This is because we are comparing our

instance variable to another of the same type as us.

Inside the method, think of the variables as belonging to ME and the parameter, which
uses , as THEM.




Equals Side of the Sheet

The equals method returns a boolean

[t returns _LIUE  ifall of the instance variables match and fa | SE€ _ifthey don’t all match.

Totestif INT double _char  are equal, use ==.
However, to check if Stri NE  areequal, use .equals.

The _Pdlldim eter type of the method is the same as the class. This is because we are comparing our

instance variable to another of the same type as us.

Inside the method, think of the variables as belonging to ME and the parameter, which
uses , as THEM.




Equals Side of the Sheet

The equals method returns a boolean

[t returns _LIUE  ifall of the instance variables match and fa | SE€ _ifthey don’t all match.

Totestif INT double _char  are equal, use ==.
However, to check if Stri NE  areequal, use .equals.

The _Pdlldim eter type of the method is the same as the class. This is because we are comparing our

instance variable to another of the same type as us.

Inside the method, think of the _I_D_S_t_a_n_C_e_ variables as belonging to ME and the parameter, which
usesd CCESSOI'S as THEM.




me.compareTo(them)

Can use the instance Use the accessors and

variables directly the parameter name

My variables > Their accessors 1

My variables < Their accessors -1

My variables == Their accessors 0



me.compareTo(them)

My variables > Their accessors 1
My variables < Their accessors -1
My variables == Their accessors 0

public int compareTo (Tree t) {
1f (height > t.getHeight())
return 1;
else 1f (height < t.getHeight ())
return -1;
else
return 0O;



The statements can

be rearranged.

If | am bigger than them If they are smaller than me
public int compareTo (Tree t) { public int compareTo (Tree t) {
if (height > t.getHeight()) if (t.getHeight () < height)
return 1; return 1;
else 1f (height < t.getHeight()) else if (t.getHeight () > height)
return -1; return -1;
else else

return 0O; return 0;



public int compareTo (Tree t) {
1f (height > t.getHeight())
return 1;
else 1if (height < t.getHeight())
return -1;
else
return O;

public int compareTo (Tree t) {
1f (height == t.getHeight ())
return O;
else if (height < t.getHeight())
return -1;
else
return 1;

public int compareTo (Tree t) {
1f (t.getHeight () < height)
return 1;
else 1f (t.getHeight () > height)
return -1;
else
return 0O;

public int compareTo (Tree t) {
1f (t.getHeight () > height)
return -1;

else 1f (t.getHeight () == height)
return 0;
else

return 1;



CompareTo Side of the Sheet

5. Fill in the blanks.

In a compareTo, the programmer is choosing the order

In a compareTo, think of the variables as belonging to the

method call. Think of that as being “ "

In a compareTo, think of the as belonging to the

object in the method call. Think of that as being “ ”,

If ME is bigger than THEM, then ME so return
[f ME is smaller than THEM, then ME so return
[f ME is the same as THEM, then we ,so return

object in the




CompareTo Side of the Sheet

5. Fill in the blanks.

In a compareTo, the programmer is choosing the sort order

In a compareTo, think of the variables as belonging to the

method call. Think of that as being “ "

In a compareTo, think of the as belonging to the

object in the method call. Think of that as being “ ”,

If ME is bigger than THEM, then ME so return
[f ME is smaller than THEM, then ME so return
[f ME is the same as THEM, then we ,so return

object in the




CompareTo Side of the Sheet

5. Fill in the blanks.

In a compareTo, the programmer is choosing the sort order

In a compareTo, think of the Instance variables as belonging to the
method call. Think of that as being “ Me "

In a compareTo, think of the as belonging to the

first

object in the method call. Think of that as being “ ”,

If ME is bigger than THEM, then ME so return
[f ME is smaller than THEM, then ME so return
[f ME is the same as THEM, then we ,so return

object in the




CompareTo Side of the Sheet

5. Fill in the blanks.
e InacompareTo, the programmer is choosing the sort order

e InacompareTo, think of the Instance variables as belonging to the fl rst object in the
method call. Think of that as being “ Me "

e InacompareTo, think of the dCCEeSSOISsS s belonging to the
SECO nd object in the method call. Think of that as being JTHEM ”,

e [f ME is bigger than THEM, then ME so return
e [f ME is smaller than THEM, then ME so return
e [f ME is the same as THEM, then we ,so return




CompareTo Side of the Sheet

5. Fill in the blanks.
e InacompareTo, the programmer is choosing the sort order

e InacompareTo, think of the Instance variables as belonging to the fl rst object in the
method call. Think of that as being “ Me "

e InacompareTo, think of the dCCEeSSOISsS s belonging to the
SECO nd object in the method call. Think of that as being JTHEM ”,

e [f ME is bigger than THEM, then ME Wins so return 1

e [f ME is smaller than THEM, then ME so return

e [f ME is the same as THEM, then we ,so return




CompareTo Side of the Sheet

5. Fill in the blanks.
e InacompareTo, the programmer is choosing the sort order

e InacompareTo, think of the Instance variables as belonging to the fl rst object in the
method call. Think of that as being “ Me "

e InacompareTo, think of the dCCEeSSOISsS s belonging to the
SECO nd object in the method call. Think of that as being JTHEM ”,

e [f ME is bigger than THEM, then ME Wins so return 1

e [f ME is smaller than THEM, then ME IOSGS so return '1

e [f ME is the same as THEM, then we ,so return




CompareTo Side of the Sheet

5. Fill in the blanks.
e InacompareTo, the programmer is choosing the sort order

e InacompareTo, think of the Instance variables as belonging to the fl rst object in the
method call. Think of that as being “ Me "

e InacompareTo, think of the dCCEeSSOISsS s belonging to the
SECO nd object in the method call. Think of that as being JTHEM ”,

e [f ME is bigger than THEM, then ME Wins so return 1

e [f ME is smaller than THEM, then ME IOSGS so return '1

e [f ME is the same as THEM, then we tie ,so return O




If you think I’'m explaining it badly, try

the official documentation instead:

Java Comparable interface

Java Comparable interface is used to order the objects of the user-defined class. This interface is
found in java.lang package and contains only one method named compareTo(Object). It provides a
single sorting sequence only, i.e., you can sort the elements on the basis of single data member only.
For example, it may be rollno, name, age or anything else.

compareTo(Object obj) method

public int compareTo(Object obj): It is used to compare the current object with the specified object. It
returns:

e positive integer, if the current object is greater than the specified object.

* negative integer, if the current object is less than the specified object.

* zero, if the current object is equal to the specified object.

You won’t understand any better, but you

will appreciate my explanation more.



3.Consider the following String operations. Fill in the blanks and use it to circle the result.

String ap = "apple"; First » Second => 1

String ban = "banana"; First == Second => 0

String cant = "cantaloupe"; First < Second => -1

Expression First's value Relation Second’s value | CompareTo Result
(look above, fill in) (circle] (look above, fill in) (circle)

ap.compareTo ("peach") ; > = < 1, 0 -1
ap.compareTo ("aaaa") ; > = < 1, 0 -1
ban.compareTo ("plum") ; > = < 1, 0 -1
ban.compareTo (ap) ? > = < 1, 0 -1
ap.compareTo (ban) ; > = < 1, 0 -1
ban.compareTo (cant) ; > = < 1, 0 -1
cant.compareTo (ap) ; > = < 1, 0 -1
ap.compareTo (cant) ; > = < 1, 0 -1

o




3.Consider the following String operations. Fill in the blanks and use it to circle the result.

String ap = "apple"; First » Second => 1

String ban = "banana"; First == Second => 0

String cant = "cantaloupe"; First < Second => -1

Expression First's value Relation Second’s value | CompareTo Result
(look above, fill in) (circle] (look above, fill in) (circle)

ap.compareTo ("peach") ; apple > = < peach 1, 0 -1
ap.compareTo ("aaaa") ; > = < 1, 0 -1
ban.compareTo ("plum") ; > = < 1, 0 -1
ban.compareTo (ap) ? > = < 1, 0 -1
ap.compareTo (ban) ; > = < 1, 0 -1
ban.compareTo (cant) ; > = < 1, 0 -1
cant.compareTo (ap) ; > = < 1, 0 -1
ap.compareTo (cant) ; > = < 1, 0 -1

o




3.Consider the following String operations. Fill in the blanks and use it to circle the result.

String ap = "apple"; First » Second => 1

String ban = "banana"; First == Second => 0

String cant = "cantaloupe"; First < Second => -1

Expression First's value Relation Second’s value | CompareTo Result
(look above, fill in) (circle (look above, fill in) (circle)

ap.compareTo ("peach") ; apple > =|«< peach 1, 0 -1
ap.compareTo ("aaaa") ; > = < 1, 0 -1
ban.compareTo ("plum") ; > = < 1, 0 -1
ban.compareTo (ap) ? > = < 1, 0 -1
ap.compareTo (ban) ; > = < 1, 0 -1
ban.compareTo (cant) ; > = < 1, 0 -1
cant.compareTo (ap) ; > = < 1, 0 -1
ap.compareTo (cant) ; > = < 1, 0 -1




3.Consider the following String operations. Fill in the blanks and use it to circle the result.

String ap = "apple"; First » Second => 1
String ban = "banana"; First == Second => 0
String cant = "cantaloupe"; First < Second => -1
Expression First's value Relation Second’s value | CompareTo Result
(look above, fill in) (circle (look above, fill in) (circle)
ap.compareTo ("peach") ; apple > = | < peach 1, 0O [-_1]
ap.compareTo ("aaaa") ; > = < 1, 0 -1
ban.compareTo ("plum") ; > = < 1, 0 -1
ban.compareTo (ap) ? > = < 1, 0 -1
ap.compareTo (ban) ; > = < 1, 0 -1
ban.compareTo (cant) ; > = < 1, 0 -1
cant.compareTo (ap) ; > = < 1, 0 -1
ap.compareTo (cant) ; > = < 1, 0 -1




	Slide 1: CompareTo
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

