Object Terminology

Why are objects important?

OBJECT Objects:

* Group details
together: data and
methods that work
on the data

1\L 1 1 B
| s JHE|
TERERE 2 J

\UEEEEE * It is a programmer-

made type.

Class File

* The template for all
of the variables
that will be made
using that type.

* [t's name is a type,
the file name and
the constructor’s
name.

Instance
Variables Objects have

a lot of
terminology

Facilitator

public class Item {
private double price;
private String name;

public Item() {
price = 13.45;
name = "t-shirt";
}
public Item(double p, String n) {
price = p;
name = n;

public void setPrice (double p) {
price = p;

}

public void setName (String n) {
name = n;

}

public double getPrice () {
return price;
}
public String getName () {
return name;
}
public String toString() {
return "The "+name+" costs $"+price;

public boolean equals(Item 1) {

if (1.getName () .equals (name)
&& 1.getPrice()==price)
return true;
else

return false;
}
public int compareTo (Item 1) {
//on the basis of price
if (1i.getPrice () >price)
return -1;
else if (i.getPrice()==price)
return O;
else
return 1;

I8

The Class lays out the A variable uses the class
data and the methods. as it’s type.

=9
~ \\\\\\\\\\\-\. I
T Y . .,

i
e
=0

18
-
\\‘\\\

» %
lf'f
~
)

§ ’0

o8

F)

Yl

public void show (View view) {
TextView textArea = (TextView)
Ttem shoe = new Item(23.45, "flip-flops");
Ttem shirt = new Item();
textArea.append (""+shoe.toString ());
textArea.append ("\n"+shirt.toString ()):;
textArea.append ("\n"+shoe.getPrice ());
shirt.setPrice (100.98);
textArea.append ("\n"+shirt.toString ());
textArea.append ("\n" + shirt.compareTo (shoe)) ;
textArea.append ("\n" + shoe.equals(shirt));

public class Item {
double price;
String name;

findViewById(R.1d.TextArea) ;

public void setPrice (double p) {
price = p;

}

public void setName (String n) {
name = n;

}

public double getPrice() {
return price;

public Item() {
price = 13.45; }
name = "t-shirt"; public String getName () {
} return name;
public Item(double p, String n) { }
price = p; public String toString() {
name = n; return "The "+name+" costs $"+price;

} }

public boolean equals(Item 1) {

if(i.getName () .equals (name)
&& 1.getPrice ()==price)
return true;
else

return false;
}
public int compareTo (Item i) {
//on the basis of price
if (i.getPrice () >price)
return -1;
else if (i.getPrice()==price)
return O;
else
return 1;

H}

But, why do we
use objects?

They seem like
pointless busy
work.

Software Development Engineer [] save

Amazon
LEIRE:1i T
WSR2 Toronto, ON

BASIC QUALIFICATIONS

* Bachelor's Degree in Computer Science or related field

* 3+ years of software development experience with Java, C/C++

* Experience with Object-Oriented Programming (QOP) and/or Design (00D)

* Computer Science fundamentals in data structures, algorithms, problem solving and complexity analysis

Generalist Programmer [save &

Ubisoft
vesorr |1 Oronto, ON

Over 1 month ago i Full-time

What it takes to make it

* Bachelors in computer science or computer engineering, or equivalent training or experience;

* Minimum 3+ years' software programming experience, in the video game industry;

* Knowledge of the workings of video game engines;

* Interest and experience in most aspects of game technology development (audio, 3D, animation, gameplay, Ul, network
and tools);

* Experience using one or more commercial game engines;

* Experience of refactoring and optimization.

- Solid proficiency in C/C++ language and debugging;

» Ability to collaborate and work well with other disciplines;

* Understanding of performance sensitive programming (algorithmic and low level optimizations);
* Good understanding of Software Engineering principles, e.g. Object Oriented programming, etc.

ENCAPSULATION

Encapsulation

1.

An object’s code is
self-contained and
independent of other
code.

It relies only on itself.
Objects are easy to
move around and use
by other coders.
Objects are easy to
update.

Encapsulation is The independence of other
essentially code means that work can be

organization. divided in a large team.

I Class ’

Methods
TE—

Variables ‘

Abstraction:
 Makes it easy for

T'M THE

PERFECT
other programmers to A e MAYSE ARE YOU
: S : LCK! SLIGHTLY TOO
instantiate in their OF A ouc ABSTOACT?

own programs.

* Allows other
programmers to think
of the problem at a
higher, more removed
level.

Abstraction

» .
. + L .
e -

. ',
” ¥

H . ‘ >

N,
.
L
'

-
- - \
... ’ .’.
- = - e
° £ x 3 = -
’ ol
3
L - -
-~ -5 -
v, -
“HR D '
- .
o -
) 0 * o - o
& T

Coder who uses the class Coder who Fnakes the class

With abstraction, using the class is easy because you don’t need
to understand the details of how the class is implemented.

| HUNGRY ARMADILLO

| Which treil should
this armadillo follow,
, to have a feast
| of juicy ents?
4 -

D

r_-————-——-————-——-—__

Whichpath? | A B C D

Remember last year?
In the applets unit,
you could use a
JButton class with no
knowledge of how to
code it.

That’s
Abstraction!

That was because
JButton was an
object coded in a
class.

Information Hiding — removing details of the instance variables.
The IV are private! They can only be used through accessors and mutators.

Interfar:el

Private (Class

Information

You can’t get at the variables in a class directly. It keeps the code more stable. Other
coders, who might not understand your brilliant system, can’t easily mess with the
variables. They are only allowed in via mutators and accessors.

¢ a P | Hidden

! ‘..'-'-"’/' ResE—————— A
| i Information
e

B — WA
e)\ LA (O 1 £ R
'\Q (T N2 -
T € e N
S
}) 2229

