Binary Search

Searching in Sorted Arrays

bR
e _* x

A card for you to write.

Linear Search

* Searching is looking for the location of the
item (index).
Start at element 0. Continue until

(a) you find it > return index (b) you reach the
end > return -1.
O(n).
Slower search than binary, however
it works on unsorted data.

https://youtu.be/xDBxVzkUk7E

Linear Search #1

Start at the beginning.

Look at each element.

Stop when:

* You find it.

* You get to the end. Return -1. It isn’t there.

(0] (1] [2] (3] [4] [5] el (7] [8] I[9] [10] [11] [12]

1 919 3 5 8 /7 21 4 33 9 0 10 2

https://youtu.be/xDBxVzkUk7E

https://youtu.be/Wo-mLpXL9aE

Start at the beginning.

Look at each element.

Stop when:

* You find it.

* You get to the end. Return -1. It isn’t there.

[0l [11 [2] (3] [4] (5] [e] | [7] (8] [9] [10]
./ X B N M P O K F R

https://youtu.be/Wo-mLpXL9aE

A card for you to write.

Binary Search

* Can be coded recursively.
Track the lowest and highest spot
where the item might be. Search halfway, adjust.

O(log n).
Much faster search than linear search,
however only works on sorted data.
e Uses the order of the data to speed up the
search.

Looking for 14

0123456 7891011121314

-2 -1 4 6 8 9 10 12 14 16 17 18 20 21 24

i i |

Looking for 14

0 112 314 516 7 8 9 10111213 14
214 6 8 9 1012 14 16 17 18 20 21 24

| |

So, we can adjust our low
boundary.

Looking for 14

0 112 314 516 7 8 9 10111213 14
214 6 8 9 1012 14 16 17 18 20 21 24

[|

Looking for 14

01234567 891011121314
214 68 91012141617 1820 21 24

So, we can adjust our high ‘E n
Too High.

boundary.

¥

Looking for 14

01234567 891011121314
214 68 91012141617 1820 21 24

il
%

Looking for 14

01234567 891011121314
214 68 9101214161718 20 21 24

So, we can adjust our high
boundary.

H
|
|
g
h

Too High.

Looking for 14

01234567 891011121314
214 68 9101214161718 20 21 24

In index
87

Looking for 13

0123456 7891011121314

-2 -1 4 6 8 9 10 12 14 16 17 18 20 21 24

i i |

Looking for 13

0 112 314 516 7 8 9 10111213 14
214 6 8 9 1012 14 16 17 18 20 21 24

| |

So, we can adjust our low
boundary.

Looking for 13

0 112 314 516 7 8 9 10111213 14
214 6 8 9 1012 14 16 17 18 20 21 24

[|

Looking for 13

01234567 891011121314
214 68 91012141617 1820 21 24

So, we can adjust our high ‘E n
Too High.

boundary.

¥

Looking for 13

01234567 891011121314
214 68 91012141617 1820 21 24

il
%

Looking for 13

01234567 891011121314
214 68 9101214161718 20 21 24

So, we can adjust our high
boundary.

H
|
|
g
h

Too High.

Looking for 13

012345678 91011121314

So, we can adjust our high *I' L
boundary. s l° i
M

In index

87

Looking for 13

012345678 91011121314
2146809

Out of order. It’s not in
either half. It’s not there.

Start Low at 0. Start High at a.length.
Find mid. Look in that position.

* If too low, adjust low to (mid + 1)

* If too high, adjust high to (mid -1)
Stop when:

 Mid is the right position.

 Low > High. Return -1. It isn’t there.

https://youtu.be/NjGSKXnaFz8

Binary Search #1

Low

High

Mid

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

-32

-12

10

14

21

https://youtu.be/NjGSKXnaFz8

Start Low at 0. Start High at a.length. httpsz//VOUtu-be/79h|C|bvntQ
Bina ry Search #2 Find mid. Look in that position.
If too low, adjust low to (mid + 1)
If too high, adjust high to (mid -1)
Stop when:
Mid is the right position.
Low > High. Return -1. It isn’t there.

Low High Mid

[0] [1] [2] 3] [4] [5] [6] [7]
Apple Bee Carrot Egg Jam Mitt Pet Zebra

https://youtu.be/79hlCibvntQ

) Start Low at 0. Start High at a.length. https://youtu.be/Wo-mLpXL9aE
Bina ry Sea rCh H3 Find mid. Look in that position.

If too low, adjust low to (mid + 1)

If too high, adjust high to (mid -1)
Stop when:

Mid is the right position.

Low > High. Return -1. It isn’t there.

Low High Mid

[0l 111 (2] (31 (4] [5] el (7] (8] [9] [10] [11] [12]
A B D E G | K M N Q S U [/

https://youtu.be/Wo-mLpXL9aE

Why is Binary Search
O(logn)?

And why do you keep saying that is really fast?

ES

~—
e

Numbers 1 to 2 = 1 guesses.

21

RERIER

Numbers 1 to 3 = 2 guesses.

22 =4

5

Numbers 1 to 15 = 4 guesses.

24

=16

Numbers 1 to 31 = 5 guesses.

2° = 32

IIEII

IIEII

IIHII

|IHII |Iial |I%i| II%HI ||%HI |':I| II%HI lEIII
|Ill |I=l |HH| lHHl |HH| |E%I| |I%i| |I%i| |HH| |HH| ||%|| |IHHI lHHl lHHl lHHl IHH'
| |
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

6 guesses.

Numbers 1 to 63

2° = 64

Binary Search

IS Logarithmic
Highest Binary Number of
Number (n) | Expression |Searches
2 21 =72 1 00,(2)=1
3 22 =4 2 00,(4)=2
7 23 =8 3 09,(8)=3
15 24 =16 4 09,(16)=4
31 2° =32 5 00,(32)=5
63 2° =64 6 09,(64)=6
127 27 =128 7 log,(128)=7

Binary Search is a lot faster

C3 - A =CEILING(LOG(E3 2),1)+1

A B C
1 # of Records Avg Linear Max Binary
2 1 1 1
3 10 5 4!
4 100 50 7
5 1000 500 10
6 10000 5000 14
/ 100000 50000 17
8 1000000 500000 20
9 10000000 5000000 24
10 100000000 50000000 27
11 1000000000 500000000 30
12 10000000000 5000000000 34

1)
BINARY SEARCH idea-instructions.com/binary-search/ m
v1.0, CC by-nc-sa 4.0

- = N 3 —
#0660 %g

0 O

