
Mergesort
Recursive and O(n log n)



John Von Neumann



John Von Neumann

Foundations of 
Mathematics



John Von Neumann

Game 
theory

Foundations of 
Mathematics



John Von Neumann

Game 
theory

Foundations of 
Mathematics

Digital 
Computer



John Von Neumann

Game 
theory

Foundations of 
Mathematics

Digital 
Computer

ENIAC



John Von Neumann

Game 
theory

Foundations of 
Mathematics

Digital 
Computer

ENIAC
First Climate 

Modelling 
Software



John Von Neumann

Game 
theory

Foundations of 
Mathematics

Digital 
Computer

Quantum 
Mechanics

ENIAC
First Climate 

Modelling 
Software



John Von Neumann

Game 
theory

Foundations of 
Mathematics

Digital 
Computer

Quantum 
Mechanics

Manhattan 
Project

ENIAC
First Climate 

Modelling 
Software



“Keeping up with him 
was ... impossible. The 
feeling was you were on 
a tricycle chasing a 
racing car.”



To gain a measure of von Neumann's 
achievements, consider that had he 
lived a normal span of years, he would 
certainly have been a recipient of a 
Nobel Prize in economics. And if there 
were Nobel Prizes in computer science 
and mathematics, he would have been 
honored by these, too. [In addition, von 
Neumann should be] thought of as a 
triple Nobel laureate or, possibly, a ​4-
fold winner, for his work in physics, in 
particular, quantum mechanics.



John von Neumann 
planned out this 
algorithm in 1945.

Programming didn’t 
yet exist.



Merge Means?



Merge Means?

To join two 
things 

together



Merge Means?

To join two 
things 

together

In an orderly 
fashion



Conceptually, merge sort works as follows:
 Divide the unsorted list into n sublists, 

each containing 1 element (a list of 1 
element is considered sorted).

 Repeatedly merge sublists to produce 
new sorted sublists until there is only 1 
sublist remaining. This will be the sorted 
list.



123 4 56 7 8



123 4 56 7 8

3 46 7



123 4 56 7 8

123 4 56 7 8



123 4 56 7 8

123 4 56 7 8

36



123 4 56 7 8

123 4 56 7 8

36 4 7



123 4 56 7 8

123 4 56 7 8

36 4 7 28



123 4 56 7 8

123 4 56 7 8

36 4 7 28 15



123 4 56 7 8

123 4 56 7 8

6

36 4 7 28 15



123 4 56 7 8

123 4 56 7 8

36

36 4 7 28 15



123 4 56 7 8

123 4 56 7 8

3 46

36 4 7 28 15



123 4 56 7 8

123 4 56 7 8

3 46 7

36 4 7 28 15



123 4 56 7 8

123 4 56 7 8

3 46 7 8

36 4 7 28 15



123 4 56 7 8

123 4 56 7 8

23 46 7 8

36 4 7 28 15



123 4 56 7 8

123 4 56 7 8

23 4 56 7 8

36 4 7 28 15



123 4 56 7 8

123 4 56 7 8

123 4 56 7 8

36 4 7 28 15



123 4 56 7 8

123 4 56 7 8

123 4 56 7 8

36 4 7 28 15

3 6

D
I
V
I
D
E

M
E
R
G
E



123 4 56 7 8

123 4 56 7 8

123 4 56 7 8

36 4 7 28 15

3 6 4 7

D
I
V
I
D
E

M
E
R
G
E



123 4 56 7 8

123 4 56 7 8

123 4 56 7 8

36 4 7 28 15

3 6 4 7 2 8

D
I
V
I
D
E

M
E
R
G
E



123 4 56 7 8

123 4 56 7 8

123 4 56 7 8

36 4 7 28 15

3 6 4 7 2 8 1 5

D
I
V
I
D
E

M
E
R
G
E



123 4 56 7 8

123 4 56 7 8

123 4 56 7 8

36 4 7 28 15

3 6 4 7 2 8 1 5

3 4 6 7

D
I
V
I
D
E

M
E
R
G
E



123 4 56 7 8

123 4 56 7 8

123 4 56 7 8

36 4 7 28 15

3 6 4 7 2 8 1 5

3 4 6 7 1 2 5 8

D
I
V
I
D
E

M
E
R
G
E



1 2 3 4 5 6 7 8

123 4 56 7 8

123 4 56 7 8

123 4 56 7 8

36 4 7 28 15

3 6 4 7 2 8 1 5

3 4 6 7 1 2 5 8

D
I
V
I
D
E

M
E
R
G
E



How do you 
handle uneven 

array sizes?



38 27 43 3 9 82 10

9 82 10

How do you 
handle uneven 

array sizes?

Follow the 
path given.



The code:

public int[] mergeSort(int[] array) {

if (array.length <= 1)
return array;

else {
int middle = array.length / 2;
int firstHalf = mergeSort(array[0..middle - 1]);
int secondHalf = mergeSort(array[middle..array.length - 1]);
return merge(firstHalf, secondHalf);

}
}



The code:

public int[] mergeSort(int[] array) {

if (array.length <= 1)
return array;

else {
int middle = array.length / 2;
int firstHalf = mergeSort(array[0..middle - 1]);
int secondHalf = mergeSort(array[middle..array.length - 1]);
return merge(firstHalf, secondHalf);

}
}

Recursive 
Call one



The code:

public int[] mergeSort(int[] array) {

if (array.length <= 1)
return array;

else {
int middle = array.length / 2;
int firstHalf = mergeSort(array[0..middle - 1]);
int secondHalf = mergeSort(array[middle..array.length - 1]);
return merge(firstHalf, secondHalf);

}
}

Recursive 
Call one

Recursive 
Call two



The code:

public int[] mergeSort(int[] array) {

if (array.length <= 1)
return array;

else {
int middle = array.length / 2;
int firstHalf = mergeSort(array[0..middle - 1]);
int secondHalf = mergeSort(array[middle..array.length - 1]);
return merge(firstHalf, secondHalf);

}
}

Recursive 
Call one

Recursive 
Call two

Merge the 
two sorted 

arrays



Algorithm Speeds

• O(1) – swap two values, size of a array
• O(log n) – binary search
• O(n) – max, min, average, print, linear search
• O(n log n) – merge sort, quick sort
• O(n^2) – bubble sort, selection sort
• O(n!) – Bogo sort 

A reminder of a previous card:



O (n logn)

Merge sort’s speed



O (n logn)

Merge, 
one loop

Division, 
recursive

Merge sort’s speed



Mergesort Characteristics

• Algorithm: First, divide the array recursively until 
you reach the base case: an array of one 
element. Second, repeatedly merge the array 
together.

• Speed: n log n. Slightly slower than Quicksort.
• Mergesort is not an in-place algorithm. It does 

not use swaps to move elements around. 
Additional memory is needed for the recursive 
calls.

• Trade-off: Mergesort gains its incredible speed by 
using extra memory.



How do you 
choose which 
algorithm to 

use?



How do you 
choose which 
algorithm to 

use?

The array is 200 
elements long (not 

very big), and it is in 
completely random 

order.



How do you 
choose which 
algorithm to 

use?

The array is 200 
elements long (not 

very big), and it is in 
completely random 

order.

No. In random 
order.



How do you 
choose which 
algorithm to 

use?

The array is 200 
elements long (not 

very big), and it is in 
completely random 

order.

No. In random 
order.

Yes. Array isn’t 
very big.



How do you 
choose which 
algorithm to 

use?

The array is 200 
elements long (not 

very big), and it is in 
completely random 

order.

No. In random 
order.

Yes. Array isn’t 
very big.




