
Mergesort
Recursive and O(n log n)
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“Keeping up with him 
was ... impossible. The 
feeling was you were on 
a tricycle chasing a 
racing car.”



To gain a measure of von Neumann's 
achievements, consider that had he 
lived a normal span of years, he would 
certainly have been a recipient of a 
Nobel Prize in economics. And if there 
were Nobel Prizes in computer science 
and mathematics, he would have been 
honored by these, too. [In addition, von 
Neumann should be] thought of as a 
triple Nobel laureate or, possibly, a ​4-
fold winner, for his work in physics, in 
particular, quantum mechanics.



John von Neumann 
planned out this 
algorithm in 1945.

Programming didn’t 
yet exist.
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To join two 
things 

together

In an orderly 
fashion



Conceptually, merge sort works as follows:
 Divide the unsorted list into n sublists, 

each containing 1 element (a list of 1 
element is considered sorted).

 Repeatedly merge sublists to produce 
new sorted sublists until there is only 1 
sublist remaining. This will be the sorted 
list.
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How do you 
handle uneven 

array sizes?
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How do you 
handle uneven 

array sizes?

Follow the 
path given.



The code:

public int[] mergeSort(int[] array) {

if (array.length <= 1)
return array;

else {
int middle = array.length / 2;
int firstHalf = mergeSort(array[0..middle - 1]);
int secondHalf = mergeSort(array[middle..array.length - 1]);
return merge(firstHalf, secondHalf);

}
}
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arrays



Algorithm Speeds

• O(1) – swap two values, size of a array
• O(log n) – binary search
• O(n) – max, min, average, print, linear search
• O(n log n) – merge sort, quick sort
• O(n^2) – bubble sort, selection sort
• O(n!) – Bogo sort 

A reminder of a previous card:



O (n logn)

Merge sort’s speed



O (n logn)

Merge, 
one loop

Division, 
recursive

Merge sort’s speed



Mergesort Characteristics

• Algorithm: First, divide the array recursively until 
you reach the base case: an array of one 
element. Second, repeatedly merge the array 
together.

• Speed: n log n. Slightly slower than Quicksort.
• Mergesort is not an in-place algorithm. It does 

not use swaps to move elements around. 
Additional memory is needed for the recursive 
calls.

• Trade-off: Mergesort gains its incredible speed by 
using extra memory.
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