${\sf ICS4U-Review\ Questions-Unit\ 4-Algorithms}$

	T
1. Speed of swap	O(1)
2. Speed of find length of array	O(1)
3. Speed of find max	O(n)
4. Speed of selection sort	O(n^2)
5. Speed of bubble sort – best case	Close to O(n)
6. Speed of bubble sort – average case	O(n^2)
7. Speed of quick sort	O(n log n)
8. Speed of mergesort	O(n log n)
9. Speed of merge	O(n)
10. Speed of binary search	O(log n)
11. Speed of linear search	O(n)
12. Speed of bogosort	O(n!)
13. In Big-Oh notation, the O stands for	Order
14. In Big-Oh notation, the n stands for	Number of elements in the array
15. Why don't we measure algorithm speed in terms of seconds or time?	It is hardware dependent. Big-Oh is based
	on the algorithm.
16. Which is faster: binary or linear search	Binary
17. Which is faster: searching or sorting	Searching
18. Which is faster: quicksort or mergesort?	Quicksort
19. Which is faster: bubblesort (average) or selection sort?	Selection Sort
20. Put the 4 sorts in order, fastest to slowest	Bubble (best case), Quick, Merge,
,	Selection
21. Why is selection sort called selection sort?	SELECTING best element (max)
22. Why is quicksort called quicksort?	It is the QUICKEST. Purposeful swaps.
23. Why is mergesort called mergesort?	It divides the array into sorted arrays and
, ,	MERGES them together
24. Why is bubblesort called bubblesort?	The billions of little swaps are like
, ,	bubbles rising in pop.
25. Why is binary search called binary search?	It splits the remaining part of the array in
	half. Halfing is based on 2 or BINARY
26. Why is linear search called linear search?	It moves in a LINE down the array
27. What is the hidden cost of binary search?	Data must be sorted AND sorting is a
, , , , , , , , , , , , , , , , , , , ,	slow operation
28. Term for putting elements in order	Sorting
29. Term for finding an element in an array	Searching
30. Good hardware cannot compensate for	A bad algorithm
31. Term for a series of steps that complete a task	Algorithm
32. What is the fastest in-place algorithm in the general case?	Quicksort
33. What is Quicksort's title?	Fastest in-place algorithm in the general
Sol What is quishoot to their.	case.
34. Where is the pivot located at the start of a Quicksort partition?	At the beginning of the array
35. Where is the pivot located at the end of a Quicksort partition?	It is in its correct location.
36. At the end of a quicksort partition, what is on the left of the pivot?	Elements smaller than the pivot
37. At the end of a quicksort partition, what is on the right of the pivot?	Elements larger than the pivot
38. Which sorting algorithm is not "in-place"?	Mergesort
39. What does "in-place" algorithm mean?	It uses swaps.
33. What does in place digorithm mean:	It doesn't need extra memory.
40. Which two sorting algorithms are recursive?	Quicksort and mergesort
41. What are the two parts of mergesort?	Divide and merge
41. What are the two parts of mergesort:	Divide and merge

42. What is the slowest sorting algorithm?	Bogosort
43. Why is quicksort better than bubblesort?	More purposeful swaps. Moves to correct
	half of array.
44. How do you know the element isn't in the array in binary search?	High < Low or Low > High
45. Who invented Quicksort?	Tony Hoare
46. Who invented Mergsort?	John Von Neumaan
47. Who wrote that good hardware cannot compensate for a slow	Jon Bentley
algorithm?	
48. First sorting algorithm CODED	Bubble sort
49. First sorting algorithm CREATED	Mergesort
50. What is the first test to determine which sorting algorithm to use?	Almost sorted. Use Bubble.
51. What is the second test to determine which sorting algorithm to	Random order. Use Quick.
use?	
52. What is the third test to determine which sorting algorithm to use?	Enough memory. Use Merge
53. What is the first test to determine which searching algorithm to use?	Sorted? Use Binary
	Not Sorted? Use Linear
54. Put the sorting speeds in order, fastest to slowest	O(1), O(log n), O(n), O(n log n), O(n^2),
	O(n^3), O(n!)
55. Positive of Quicksort	Really fast. O(n log n)
56. Negative of Quicksort	Complex. Only for random data.
	Reverse order or Almost sorted = bad
57. Positive of Mergesort	Really fast. O(n log n)
58. Negative of Mergesort	Requires extra memory
59. Positive of Bubble sort	If almost sorted, close to O(n). That's fast
60. Negative of Bubble sort	In all other cases, slow O(n^2). A lot of
	swaps.
61. Positive of Selection sort	Easy to understand. Based on max.
62. Negative of Selection sort	Slow. Simplicity isn't efficient.
63. Positive of Binary search	Fast. Really fast. O(log n)
64. Negative of Binary search	Requires sorted data. Sorting is slow.
65. Positive of Linear search	Works even for unsorted data
66. Negative of Linear search	Slower than binary search.
67. What is the edge guard for i-1?	i-1 >=0
68. What is the edge guard for i+1?	i+1 <row< td=""></row<>
69. What is the edge guard for j-1?	j-1>=0
70. What is the edge guard for j+1?	j+1 <col< td=""></col<>
71. What is the outer for loop for a coding question?	for(int i=0; i <row; i++)<="" td=""></row;>
72. What is the inner for loop for a coding question?	for(int j=0; j <col; j++)<="" td=""></col;>
73. Which way is the row?	Horizontal (i)
74. Which way is the column?	Vertical (j)
75. If the actionCommand is n, what is the row?	n/col
76. If the actionCommand is n, what is the column?	n%col