
Conway’s Game of Life

The Game of Life is zero-player game. Each square on a
grid is in one of two possible states: live or dead. The
next generation of each cell is determined by its
interactions with its eight neighbours:

• Any live cell with fewer than two live neighbours
dies, as if by loneliness.

• Any live cell with two or three live neighbours
lives on to the next generation.

• Any live cell with more than three live
neighbours dies, as if by overpopulation.

• Any dead cell with exactly three live neighbours
becomes a live cell, as if by reproduction.

By clicking the next button, you can see the next
generation.

Your Assignment:
• Code the NextGeneration method.

• Specifically, the part where you need to count your neighbours is incorrect – it is missing edge guards.

• It is highlighted in the code below.

import javax.swing.*;

import java.applet.*;

import java.awt.event.*;

import java.awt.*;

public class GameOfLife extends Applet implements ActionListener

{

 int row = 36;

 int col = 30;

 int tracker[] [] = new int [row] [col];

 JButton pics[] = new JButton [row * col];

 public void init ()

 {

 //set up R-Pentamino

 tracker [16] [15] = 1;

 tracker [15] [16] = 1;

 tracker [16] [16] = 1;

 tracker [16] [17] = 1;

 tracker [17] [15] = 1;

 resize (350, 500);

 setBackground (Color.black);

 JLabel title = new JLabel ("Game of Life");

 title.setFont (new Font ("Arial", Font.BOLD, 40));

 title.setForeground (new Color (207, 198, 126));

 add (title);

 Panel p = new Panel ();

 JButton next = new JButton ("Next");

 next.setBackground (new Color (37, 37, 37));

 next.setForeground (Color.red);

 next.addActionListener (this);

 next.setActionCommand ("next");

 add (next);

 JButton glider = new JButton ("Glider");

 glider.setBackground (new Color (37, 37, 37));

 glider.setForeground (new Color (207, 198, 126));

 glider.addActionListener (this);

 glider.setActionCommand ("Glider");

 p.add (glider);

 JButton pi = new JButton ("Pi");

 pi.setBackground (new Color (37, 37, 37));

 pi.setForeground (new Color (207, 198, 126));

 pi.addActionListener (this);

 pi.setActionCommand ("Pi");

 p.add (pi);

 JButton blinker = new JButton ("Blinker");

 blinker.setBackground (new Color (37, 37, 37));

 blinker.setForeground (new Color (207, 198, 126));

 blinker.addActionListener (this);

 blinker.setActionCommand ("Blinker");

 p.add (blinker);

 JButton r = new JButton ("R-Pentamino");

 r.setBackground (new Color (37, 37, 37));

 r.setForeground (new Color (207, 198, 126));

 r.addActionListener (this);

 r.setActionCommand ("R-Pentamino");

 p.add (r);

 add (p);

 Panel grid = new Panel (new GridLayout (row, col));

 int m = 0;

 for (int i = 0 ; i < row ; i++)

 {

 for (int j = 0 ; j < col ; j++)

 {

 pics [m] = new JButton ();

 pics [m].setPreferredSize (new Dimension (10, 10));

 pics [m].setBorderPainted (false);

 pics [m].setBackground (Color.green);

 pics [m].setActionCommand ("" + m);

 pics [m].addActionListener (this);

 grid.add (pics [m]);

 m++;

 }

 }

 add (grid);

 redraw ();

 }

 public void reset ()

 {

 for (int i = 0 ; i < row ; i++)

 {

 for (int j = 0 ; j < col ; j++)

 {

 tracker [i] [j] = 0;

 }

 }

 }

 public void actionPerformed (ActionEvent e)

 {

 if (e.getActionCommand ().equals ("Blinker"))

 {

 reset ();

 tracker [8] [8] = 1;

 tracker [9] [8] = 1;

 tracker [10] [8] = 1;

 redraw ();

 }

 else if (e.getActionCommand ().equals ("Pi"))

 {

 reset ();

 tracker [15] [14] = 1;

 tracker [16] [14] = 1;

 tracker [17] [14] = 1;

 tracker [15] [15] = 1;

 tracker [15] [16] = 1;

 tracker [16] [16] = 1;

 tracker [17] [16] = 1;

 redraw ();

 }

 else if (e.getActionCommand ().equals ("Glider"))

 {

 reset ();

 tracker [1] [3] = 1;

 tracker [2] [1] = 1;

 tracker [2] [3] = 1;

 tracker [3] [2] = 1;

 tracker [3] [3] = 1;

 tracker [7] [7] = 1;

 tracker [8] [5] = 1;

 tracker [8] [7] = 1;

 tracker [9] [6] = 1;

 tracker [9] [7] = 1;

 redraw ();

 }

 else if (e.getActionCommand ().equals ("R-Pentamino"))

 {

 reset ();

 tracker [16] [15] = 1;

 tracker [15] [16] = 1;

 tracker [16] [16] = 1;

 tracker [16] [17] = 1;

 tracker [17] [15] = 1;

 redraw ();

 }

 else if (e.getActionCommand ().equals ("next"))

 nextGeneration ();

 }

 public void redraw ()

 {

 int m = 0;

 for (int i = 0 ; i < row ; i++)

 {

 for (int j = 0 ; j < col ; j++)

 {

 if (tracker [i] [j] == 1)

 pics [m].setBackground (new Color (207, 198, 126));

 else

 pics [m].setBackground (Color.black);

 m++;

 }

 }

 }

 public void nextGeneration ()

 {

 int next[] [] = new int [row] [col];

 int count = 0;

 for (int i = 0 ; i < row ; i++)

 {

 for (int j = 0 ; j < col ; j++)

 {

 count = 0;

 if (tracker [i - 1] [j - 1] == 1)

 count++;

 if (tracker [i - 1] [j] == 1)

 count++;

 if (tracker [i - 1] [j + 1] == 1)

 count++;

 if (tracker [i] [j - 1] == 1)

 count++;

 if (tracker [i] [j + 1] == 1)

 count++;

 if (tracker [i + 1] [j - 1] == 1)

 count++;

 if (tracker [i + 1] [j] == 1)

 count++;

 if (tracker [i + 1] [j + 1] == 1)

 count++;

 if (tracker [i] [j] == 1 && (count == 2 || count == 3))

 next [i] [j] = 1;

 else if (tracker [i] [j] == 0 && (count == 3))

 next [i] [j] = 1;

 }

 }

 for (int i = 0 ; i < row ; i++)

 {

 for (int j = 0 ; j < col ; j++)

 {

 tracker [i] [j] = next [i] [j];

 }

 }

 redraw ();

 }

}

