
Recursion Introduction













Recursion is like a loop.
It repeats a function over and over, progressing to an end.





“The End” is 
the middle; it 
is too small to 

draw again.

The picture 
is repeated.

It gets smaller 
and smaller.

It progresses 
to the middle.



A brief journey into 
Factorials

Ahhh… Data Management



Suppose that we have 1 thing. How many ways can it be arranged?



Suppose that we have 1 thing. How many ways can it be arranged?

A



Suppose that we have 2 things. How many ways can they be arranged?



Suppose that we have 2 things. How many ways can they be arranged?

AB
BA



Suppose that we have 2 things. How many ways can they be arranged?

AB
BA

2 1x



Suppose that we have 3 things. How many ways can they be arranged?



Suppose that we have 3 things. How many ways can they be arranged?

ABC     ACB
BAC     BCA
CBA     CAB



Suppose that we have 3 things. How many ways can they be arranged?

ABC     ACB
BAC     BCA
CBA     CAB

3 2 1x x



Suppose that we have 4 things. How many ways can they be arranged?



Suppose that we have 4 things. How many ways can they be arranged?

ABCD  ABDC  ACBD  ACDB  ADCB  ADBC  
BACD  BADC  BCAD  BCDA  BDCA  BDAC
CABD  CBAD  CADB  CABD  CDAB  CDBA
DABC  DBAC  DBAC DBCA  DCAB  DCBA



Suppose that we have 4 things. How many ways can they be arranged?

ABCD  ABDC  ACBD  ACDB  ADCB  ADBC  
BACD  BADC  BCAD  BCDA  BDCA  BDAC
CABD  CBAD  CADB  CABD  CDAB  CDBA
DABC  DBAC  DBAC DBCA  DCAB  DCBA

3 2 14 x xx



1! =     1 = 1
2! =     2 = 1 x 2 
3! =     6 = 1 x 2 x 3
4! =   24 =1 x 2 x 3 x 4
5! = 120 = 1 x 2 x 3 x 4 x 5

A factorial is the product of an integer and all the 
integers below it.



• Factorials grow 
very quickly. 

• This is why 
counting things by 
hand can be 
difficult.



















Get it?



How else can you express 5!



5! = 1 x 2 x 3 x 4 x 5

How else can you express 5!



5! = 1 x 2 x 3 x 4 x 5
5! = 4! x 5

5! = 1 x 2 x 3 x 4 x 5

How else can you express 5!



5! = 1 x 2 x 3 x 4 x 5
5! = 4! x 5

5! = 1 x 2 x 3 x 4 x 5
5! = 3! x 4 x 5

How else can you express 5!



3 × 4 × 5 × 6 =

Write using factorials



3 × 4 × 5 × 6 =
1 × 2 × 3 × 4 × 5 × 6

1 × 2

Write using factorials



3 × 4 × 5 × 6 =
1 × 2 × 3 × 4 × 5 × 6

1 × 2

=
6!

2!

Write using factorials

A 
“Chopped” 

off 
factorial.



7!

4!
=

Simplify, then evaluate



7!

4!
=
7 × 6 × 5 × 4!

4!

Simplify, then evaluate



7!

4!
=
7 × 6 × 5 × 4!

4!

= 7 × 6 × 5

Simplify, then evaluate



7!

4!
=
7 × 6 × 5 × 4!

4!

= 7 × 6 × 5

= 210

Simplify, then evaluate



Question Calculation Answer

1! 1 1

2! 2 x 1 2

3! 3 x 2 x 1 6

4! 4 x 3 x 2 x 1 24

5! 5 x 4 x 3 x 2 x 1 120

6! 6 x 5 x 4 x 3 x 2 x 1 720

Factorials:

Now we 
journey back 
into the land 
of comp sci.



It’s like a loop:

n! Values

5! 5 x 4!

5 x 4 x 3!

5 x 4 x 3 x 2!

5 x 4 x 3 x 2 x 1

Each time, 
we 

progress 
towards 1.

Each time, 
we rewrite 

it using 
factorial.



public int factorial (int n) {
if (n <= 1)

return 1;
else

return factorial (n - 1) * n;
}

The base 
case = 

when it 
stops.

n! = (n-1)! x n

The recursive 
case = calling 
itself again, 

with a smaller 
parameter



Find

n!

Enter n, 
press find.

n:

onClick: answer

id: num

id: result
public int factorial (int n) {

if (n <= 1)
return 1;

else
return factorial (n - 1) * n;

}

How do we code the method call in 
the Find button?



Find

n!

Enter n, 
press find.

n:

onClick: answer

id: num

id: result
public int factorial (int n) {

if (n <= 1)
return 1;

else
return factorial (n - 1) * n;

}

How do we code the method call in 
the Find button?

public void answer (View view) {

}



Find

n!

Enter n, 
press find.

n:

onClick: answer

id: num

id: result
public int factorial (int n) {

if (n <= 1)
return 1;

else
return factorial (n - 1) * n;

}

How do we code the method call in 
the Find button?

public void answer (View view) {
EditText num = (EditText) findViewById (R.id.num);
TextView result = (TextView) findViewById (R.id.result);

}



Find

n!

Enter n, 
press find.

n:

onClick: answer

id: num

id: result
public int factorial (int n) {

if (n <= 1)
return 1;

else
return factorial (n - 1) * n;

}

How do we code the method call in 
the Find button?

public void answer (View view) {
EditText num = (EditText) findViewById (R.id.num);
TextView result = (TextView) findViewById (R.id.result);

int n = Integer.parseInt(num.getText().toString());

}



Find

n!

Enter n, 
press find.

n:

onClick: answer

id: num

id: result
public int factorial (int n) {

if (n <= 1)
return 1;

else
return factorial (n - 1) * n;

}

How do we code the method call in 
the Find button?

public void answer (View view) {
EditText num = (EditText) findViewById (R.id.num);
TextView result = (TextView) findViewById (R.id.result);

int n = Integer.parseInt(num.getText().toString());
int answer = factorial(n);

}



Find

n!

Enter n, 
press find.

n:

onClick: answer

id: num

id: result
public int factorial (int n) {

if (n <= 1)
return 1;

else
return factorial (n - 1) * n;

}

How do we code the method call in 
the Find button?

public void answer (View view) {
EditText num = (EditText) findViewById (R.id.num);
TextView result = (TextView) findViewById (R.id.result);

int n = Integer.parseInt(num.getText().toString());
int answer = factorial(n);
result.setText(n+ “!=“ +answer);

}



A brief journey into Fibonacci
Ahhh… Art



1 1 2 3 5 8 13 21 34 55 89 …
1 2 3 4 5 6 7  8  9  10 11 …

What does fib(6) return?

What does fib(1) return?

What does fib(9) return?













Platform of 
Venus, Chichen

Itza



If the Fibonacci number is in position 1 or 2,
It is one

Otherwise
It is the sum of two previous Fibonacci numbers

public int fib (int n) {
if (n == 1 || n == 2)

return 1;
else

return fib (n - 1) + fib (n - 2);
}



System.out.println(fib(5));

fib(5)
1 1 2 3 5 8 13 21 34 55 89 …

public int fib (int n) {
if (n == 1 || n == 2)
return 1;

else
return fib (n - 1) + fib (n - 2);

}

1 2 3 4 5 6 7  8  9  10 11 …



System.out.println(fib(5));

fib(5)

fib(4) + fib(3)

1 1 2 3 5 8 13 21 34 55 89 …

public int fib (int n) {
if (n == 1 || n == 2)
return 1;

else
return fib (n - 1) + fib (n - 2);

}

1 2 3 4 5 6 7  8  9  10 11 …



System.out.println(fib(5));

fib(5)

fib(4) + fib(3)

fib(3) + fib(2) fib(2) + fib(1)

1 1 2 3 5 8 13 21 34 55 89 …

public int fib (int n) {
if (n == 1 || n == 2)
return 1;

else
return fib (n - 1) + fib (n - 2);

}

1 2 3 4 5 6 7  8  9  10 11 …



System.out.println(fib(5));

fib(5)

fib(4) + fib(3)

fib(3) + fib(2) fib(2) + fib(1)

fib(2) + fib(1)

1 1 2 3 5 8 13 21 34 55 89 …

public int fib (int n) {
if (n == 1 || n == 2)
return 1;

else
return fib (n - 1) + fib (n - 2);

}

1 2 3 4 5 6 7  8  9  10 11 …



System.out.println(fib(5));

fib(5)

fib(4) + fib(3)

fib(3) + fib(2) fib(2) + fib(1)

fib(2) + fib(1)

1 + 1

2

1 1 2 3 5 8 13 21 34 55 89 …

public int fib (int n) {
if (n == 1 || n == 2)
return 1;

else
return fib (n - 1) + fib (n - 2);

}

1 2 3 4 5 6 7  8  9  10 11 …



System.out.println(fib(5));

fib(5)

fib(4) + fib(3)

fib(3) + fib(2) fib(2) + fib(1)

fib(2) + fib(1)

1 + 1

2 + 1

2

3

1 1 2 3 5 8 13 21 34 55 89 …

public int fib (int n) {
if (n == 1 || n == 2)
return 1;

else
return fib (n - 1) + fib (n - 2);

}

1 2 3 4 5 6 7  8  9  10 11 …



System.out.println(fib(5));

fib(5)

fib(4) + fib(3)

fib(3) + fib(2) fib(2) + fib(1)

fib(2) + fib(1)

1 + 1

1 + 1

2 + 1

2

2

3

1 1 2 3 5 8 13 21 34 55 89 …

public int fib (int n) {
if (n == 1 || n == 2)
return 1;

else
return fib (n - 1) + fib (n - 2);

}

1 2 3 4 5 6 7  8  9  10 11 …



System.out.println(fib(5));

fib(5)

fib(4) + fib(3)

fib(3) + fib(2) fib(2) + fib(1)

fib(2) + fib(1)

1 + 1

1 + 1

2 + 1

3 + 2

2

2

3

1 1 2 3 5 8 13 21 34 55 89 …

public int fib (int n) {
if (n == 1 || n == 2)
return 1;

else
return fib (n - 1) + fib (n - 2);

}

1 2 3 4 5 6 7  8  9  10 11 …



System.out.println(fib(5));

fib(5)

fib(4) + fib(3)

fib(3) + fib(2) fib(2) + fib(1)

fib(2) + fib(1)

1 + 1

1 + 1

2 + 1

3 + 2

2

2

3

5

1 1 2 3 5 8 13 21 34 55 89 …

public int fib (int n) {
if (n == 1 || n == 2)
return 1;

else
return fib (n - 1) + fib (n - 2);

}

1 2 3 4 5 6 7  8  9  10 11 …







Recursion
• A method that calls itself.
• The base case is the starting point (or stopping point depending on 

perspective. It is the answer we know.
• The recursive base is the part of the code where the method calls 

itself. In the recursive case, the parameter progresses towards the 
stopping condition.

• It must have an if, so that you can have a base case and a recursive 
case.

• Recursion is useful for things that can be defined in terms of 
themselves. For example, the term in a Fibonacci sequence is the 
previous two terms in the Fibonacci sequence added together.



Recursion vs Loops
• All recursive code can be replaced by a loop and vice versa.
• Loops are better for coding sequences of values – they are more efficient.
• Loops are also generally easier to understand and code.
• Recursion is better for sorting (Quicksort and Mergesort are recursive). 
• Recursion also makes logical sense in situations like searching and the 

Fibonacci sequence. Those things are easily defined recursively. Their 
recursive code is very elegant.

• In a loop, we have the loop stopping condition. In recursion, we have a base 
case.

• In a loop, we progress to the loop stopping condition. In recursion, our 
parameters get smaller in our recursive case.

• In a loop, we can have an infinite loop. In recursion, we have a stack 
overview error.


