Recursion Introduction

|<| 'URSION
RECU R\l()\

| RI(lR\I()N |
| R[(l RSI()N

RECURSION
REQHE§ION

RECURSION

Here we go again

RECURSION

Here we go again

g
el ey T e S s s e

R e I e e T

N R

“H w o dark and wormy night. The crem sald i the coplain,
“Laplss, Wl e 5 stors.” The caplaiy cabd o the ores

“It was a dark and stormy might The crew saad to the captain
“Captain tell os 2 story.” The captain said fo the rew,

“It was a dark and stormy mght. The crew said to the captain,
“Captain, tell us a storv.”™ The captain said to the crew,

“It was a dark and stormy night. The crew said to the captain,
“Captain, tell us a storv.” The captain said to the crew,

“It was a dark and stormy night. The crew said to the captain,
“Captain, tell us a storv.” The captain said to the crew,

*It was a dark and stormy night. The crew said to the captain,
“Captain, tell us a storv.” The captain said to the crew,

“It was a dark and stormy night. The crew said to the captain,
“Captain, tell us a story.” The captain said to the crew,

Recursion is like a loop.

It repeats a function over and over, progressing to an end.

It gets smaller
and smaller.

It progresses
to the middle.

“The End” is
the middle; it
is too small to

draw again.

A brief journey into
Factorials

Ahhh... Data Management

Suppose that we have 1 thing. How many ways can it be arranged?

Suppose that we have 1 thing. How many ways can it be arranged?

Suppose that we have 2 things. How many ways can they be arranged?

Suppose that we have 2 things. How many ways can they be arranged?

AB
BA

Suppose that we have 2 things. How many ways can they be arranged?

AB
BA

2d1

Suppose that we have 3 things. How many ways can they be arranged?

Suppose that we have 3 things. How many ways can they be arranged?

ABC ACB
BAC BCA
CBA CAB

Suppose that we have 3 things. How many ways can they be arranged?

ABC ACB
BAC BCA
CBA CAB

3f281

Suppose that we have 4 things. How many ways can they be arranged?

Suppose that we have 4 things. How many ways can they be arranged?

ABCD ABDC ACBD ACDB ADCB ADBC
BACD BADC BCAD BCDA BDCA BDAC
CABD CBAD CADB CABD CDAB CDBA
DABC DBAC DBAC DBCA DCAB DCBA

Suppose that we have 4 things. How many ways can they be arranged?

ABCD ABDC ACBD ACDB ADCB ADBC
BACD BADC BCAD BCDA BDCA BDAC
CABD CBAD CADB CABD CDAB CDBA
DABC DBAC DBAC DBCA DCAB DCBA

A factorial is the product of an integer and all the
integers below it.

11= 1=1

2l= 2=1x2

3l= 6=1x2x3

4= 24 =1x2x3x4
51=120=1x2x3x4x5

10

1

12

13

O 00 ~N o U b WN RO T

= e
N O

AN R

24

120

720

5040
40320
362880
3628800
39916800
479001600

* Factorials grow
very quickly.

* Thisis why
counting things by
hand can be
difficult.

B

———

et

3 . e
[\EYEPLEQ FRva S T st | ek

SN N L2 AN s T T TSN, R VW

Within each country there were 3 mountains,

— gy e

Withie cach walled kingdoe there were 5 villages

Withie cach walled kingdoey there were 5 villages

Here
['=
=
3=
4l =
5!=
6! =
7!
8!
N
10! =

I

Il

is a list of the factorials in this story:
L X Jlss |
. |

3 X M= .
P I 2 X3
5)(4;_ I 2% 3 KNG
o lx2x3x4x$
G | X2 X3IX4X5X6
8x7;: 1X2X3X4X5X6X7
i 1x2x3x4x5x6x7x8
2x3x4x5xsx7x8x9

10 X 91 =
M= XIX3IX4X5X6XTXEXIXIO0

| (island)

2 (countries)
6 (mountains)
24 (walled kingdoms)
120 (villages)
720 (houses)
5,040 (rooms)
= 40,320 ((‘upboard's)

c—

I

I

Il

il

= 362,880 (boxes)

= 3,628,800 (jars)

A |B|C| D
...... o1 - .
S0 = 11 = 1
7 3 2! = 2
= s 31 = 6
e s 41 = 24
= s 51 = 120
> 12! 7 6! = 720
e 71 = 5040
== : 81 = 40320
o 91= 362880
1101 = 3628800
479001600 N
2111 = 39916800
S : =12 | = 479001600

How else can you express 5!

How else can you express 5!

5l=1x2x3x4x5

How else can you express 5!

5l=1x2x3x4x5
51=41 x5

51l=1x2x3x4x5

How else can you express 5!

51=1x2x3x4x5
51=41 x5

51l=1x2x3x4x5
51=3Ix4 x5

Write using factorials

3X4X5X%X6=

Write using factorials

1 X2Xx3X4x5x%x6

3X4X5X6=
1 X 2

Write using factorials

1 X2Xx3X4x5x%x6

3X4X5X6=
1 X 2

6!

o E “Chopped”

off
factorial.

Simplify, then evaluate

7!
41

Simplify, then evaluate

ﬂ_7x6x5x4!

4! 4!

Simplify, then evaluate

ﬂ_7x6x5x4!

41" 41
=7X6X5

Simplify, then evaluate

ﬂ_7x6x5x4!

41" 41
=7X6X5

= 210

Factorials:

m Calculation
1! 1 1

7 % 1 g Now we
journey back
into the land

3! 3x2x1 6

4] 4x3x2x1 24
5 5x4x3x2x1 120
6! 6x5x4x3x2x1 720

of comp sci.

It’s like a loop:

|ﬂllvmm5

Each time,
we
51 5x4l progress
towards 1.
5x4 x 3!
5X4X3X2! Each time,
5X4X3X2X1 we rewrite

It using

factorial.

o . . The base
public int factorial (int n) { e =

if (n <= 1) when it
return 1; stops.
else
return factorial (n - 1) * n;

The recursive
case = calling

itself again,
with a smaller
parameter

How do we code the method call in

l the Find button?

onClick: answer

Find

public int factorial (int n) {

id: result
if (n <= 1)
Enter n/ return 1;
. else
press flnd' return factorial (n - 1) * n;

How do we code the method call in

l the Find button?

public void answer (View view) {

id: num }

onClick: answer

Find

public int factorial (int n) {

id: result
if (n <= 1)
Enter n/ return 1;
. else
press flnd' return factorial (n - 1) * n;

How do we code the method call in

I the Find button?

public void answer (View view) {
EditText num = (EditText) findViewById (R.id.num);
id: num TextView result = (TextView) findViewById (R.id.result);

onClick: answer

Find

public int factorial (int n) {

id: result
if (n <= 1)
Enter n/ return 1;
. else
preSS flnd' return factorial (n - 1) * n;

How do we code the method call in

I the Find button?

public void answer (View view) {
EditText num = (EditText) findViewById (R.id.num);

ktnggr TextView result = (TextView) findViewById (R.id.result);
int n = Integer.parseInt(num.getText().toString());
onClick: answer }
Find
id" result publi; %:t(ia;;orial (int n) {
Enter n/ return 1;
preSS flnd Elser‘etur‘n factorial (n - 1) * n;

How do we code the method call in

I the Find button?

n:

public void answer (View view) {
EditText num = (EditText) findViewById (R.id.num);

id: num TextView result = (TextView) findViewById (R.id.result);
int n = Integer.parseInt(num.getText().toString());
int answer = factorial(n);
onClick: answer }
- resylt publi; ?:t<fa§§or1al (int n) {
Enter n/ return 1;
- else
preSS flnd' return factorial (n - 1) * n;

How do we code the method call in

I the Find button?
public void answer (View view) {

n:
EditText num = (EditText) findViewById (R.id.num);
id: num TextView result = (TextView) findViewById (R.id.result);

int n = Integer.parseInt(num.getText().toString());
int answer = factorial(n);
onClick: answer PESUlt . SetTEXt (N+ «« ! = +an5wer‘) ;

Find

public int factorial (int n) {

id: result
if (n <= 1)
Enter n/ return 1;
. else
preSS flnd' return factorial (n - 1) * n;

A brief journey into Fibonacci

Ahhh... Art

5 6
5 8 13 21 34 55 89 ..

What does fib(6) return?
What does fib(1) return?

What does fib(9) return?

/ 8 9 10 11 ..

34

duu
N

13

YOUR CARD

i o

DOE

86 mm

54/86 = 6279
Golden Ratio = .618

Elevation of Temple XII,
Palenque, Chiapas, Mexico
Measured Drawing by G. F. Andrews (1974)

R
(T =
Ay J f;:.
il
[T
7 i
tl o)
N

Platform of
Venus, Chichen
Itza

If the Fibonacci number is in position 1 or 2,
It Is one
Otherwise

It is the sum of two previous Fibonacci numbers

public int fib (int n) {
if (n ==1 || n == 2)
return 1;
else
return fib (n - 1) + fib (n - 2);

System.out.println(fib(5));

fib(5)

11235813 21 34 55 89 ..

public int fib (int n) {
if (n==1 || n == 2)
return 1;
else
return fib (n - 1) + fib (n - 2);

System.out.println(fib(5));

fib(5)

fib(4) + fib(3)

11235813 21 34 55 89 ..

public int
if (n ==
return
else
return

fib (int n) {
1 || n==2)
1;

fib (n - 1) + fib (n - 2);

System.out.println(fib(5));

fib(5)

11235813 21 34 55 89 ..

fib(4) + fib(3)

fib(3) + fib(2) fib(2) + fib(1)

public int fib (int n) {
if (n==1 || n==2)
return 1;
else
return fib (n - 1) + fib (n - 2);
}

System.out.println(fib(5));

fib(5)

11235813 21 34 55 89 ..

fib(4) + fib(3)

fib(3) + fib(2) fib(2) + fib(1)

public int fib (int n) {
. . if (n==1 || n == 2)
flb(2) + flb(l) return 1;
else
return fib (n - 1) + fib (n - 2);
}

System.out.println(fib(5));

fib(5)

11235813 21 34 55 89 ..

fib(4) + fib(3)

fib(3) + fib(2) fib(2) + fib(1)

2 public int fib (int n) {
. . if (n==1]| n==2)
fib(2) + fib(1) " return 1;
1 1 else
+ return fib (n - 1) + fib (n - 2);

}

System.out.println(fib(5));

fib(5)

11235813 21 34 55 89 ..

fib(4) + fib(3)

3
fib(3) + fib(2) fib(2) + fib(1)

2 + 1
2 public int fib (int n) {
. . if (n==1 || n == 2)
fib(2) + fib(1) " return 1;
1 1 else
+ return fib (n - 1) + fib (n - 2);

}

System.out.println(fib(5));
112358 13 21 34 55 89 ..

fib(5)
fib(4) + fib(3)
3 2
fib(3) + fib(2) fib(2) + fib(1)
2 + 1 1+ 1
2 put?lic int fib (int n) {
fib(2) + fib(1) Ttz
1+ 1 eligtur‘n fib (n - 1) + fib (n - 2);

}

System.out.println(fib(5));
112358 13 21 34 55 89 ..

fib(5)
fib(4) + fib(3)
3 + 2
3 2
fib(3) + fib(2) fib(2) + fib(1)
2 + 1 1+ 1
2 put?lic int fib (int n) {
fib(2) + fib(1) Ttz
1+ 1 eligtur‘n fib (n - 1) + fib (n - 2);

}

System.out.println(fib(5));
112358 13 21 34 55 89 ..

fib(5)
5
fib(4) + fib(3)
3 + 2
3 2
fib(3) + fib(2) fib(2) + fib(1)
2 + 1 1+ 1
2 put?lic int fib (int n) {
fib(2) + fib(1) Ttz
1+ 1 eligtur‘n fib (n - 1) + fib (n - 2);

}

24229

r -

To-DO LIS T
I+ Make a to-do ligt

Recursion

A method that calls itself.

The base case is the starting point (or stopping point depending on
perspective. It is the answer we know.

The recursive base is the part of the code where the method calls
itself. In the recursive case, the parameter progresses towards the

stopping condition.

It must have an if, so that you can have a base case and a recursive
case.

Recursion is useful for things that can be defined in terms of
themselves. For example, the term in a Fibonacci sequence is the
previous two terms in the Fibonacci sequence added together.

Recursion vs Loops

All recursive code can be replaced by a loop and vice versa.

Loops are better for coding sequences of values — they are more efficient.
Loops are also generally easier to understand and code.

Recursion is better for sorting (Quicksort and Mergesort are recursive).
Recursion also makes logical sense in situations like searching and the
Fibonacci sequence. Those things are easily defined recursively. Their

recursive code is very elegant.

In a loop, we have the loop stopping condition. In recursion, we have a base
case.

In a loop, we progress to the loop stopping condition. In recursion, our
parameters get smaller in our recursive case.

In a loop, we can have an infinite loop. In recursion, we have a stack
OVerview error.

