Verification

Tic Tac Toe

@ B N 4 83% W 12:26 PM

BhattyTicTacToe

Current Turn:

A

() @‘

KQ 0 8

Yesterday, we used
methods to cut out
repeated code. What

three ORATE principles
did we apply?

©

BhattyTicTacToe

B N 4 83% W 12:26 PM

Reuse
Testing
Extensibility.

Pulling out
repeated code
helps with all
three of these

principles.

® B Nf 4 83%0M 12:26 PM

BhattyTicTacToe

Current Turn: *. Today, we are going

\Q \Q ‘ to use methods to

help with the other
two pieces of ORATE.

@ B N 4 83% W 12:26 PM

BhattyTicTacToe

Organization.
Abstraction.

We are going to pull
out code that has a

distinct function and

group it in a method.

These methods all verify if someone has won the game.

public boolean win()
Returns true if certain conditions are met

public boolean winRiddle (String word){

Returns true if the word matches the answer
public void rockPaperScissorsWin(char pl, char p2)

Toasts either player 1 or 2, based on who wins

public void win()

Toasts either X or O, based on who wins

What type is each kind

A: No return, C: No return,
No Parameters Parameters

of method?

B: Return, D: Return,
No Parameters Parameters

1.
public boolean win()

2.
public boolean winRiddle (String word){

3.
public void rockPaperScissorsWin(char pl, char p2)

4.
public void win()

How do these methods As programs become more complex, having
all the code inside the onCreate() function

becomes impossible. A function is like a mini-
program that we can code without having to
1. think about the rest of the program. This
public boolean win () allows us to reduce a complicated program
into smaller, more manageable chunks,
reducing the overall complexity.

help with organization?

2.
public boolean winRiddle (String word){

3.
public void rockPaperScissorsWin(char pl, char p2)

4.
public void win()

How do these methods

help with organization?

1.
public boolean win()

2.
public boolean winRiddle (String word){

3.
public void rockPaperScissorsWin(char pl, char p2)

4.
public void win()

How do these methods

help with abstraction?

1.
public boolean win()

2.
public boolean winRiddle (String word){

3.
public void rockPaperScissorsWin(char pl, char p2)

4.
public void win()

How do these methods [n order to use a function, you only need to
know its name, inputs and outputs. You don't

need to know how it works. This lowers the
amount of knowledge required to use other
1 people’s code, especially when using imports.

public boolean win()

help with abstraction?

pﬁblic boolean winRiddle (String word){

phblic void rockPaperScissorsWin(char pl, char p2)

public void win()

Let’s look at this

method:

3. First, code the win methods. Then, using the method signatures, call the methods.

(a) Method:
public boolean win(){
//returns true if 5 points (global variable), false otherwise
if (points >=)
return 3
else
return 3
}
Call:
if(== true)

Toast.makeText(getApplicationContext(), "Win!",
Toast.LENGTH_SHORT).show();

3. First, code the win methods. Then, using the method signatures, call the methods.
(a) Method:

public boolean win(){
//returns true if 5 points (global variable), false otherwise

if (points »>= 5)
return true ;

else
return _ false :

Call:

if(== true)
Toast.makeText(getApplicationContext(), "Win!",
Toast.LENGTH_SHORT).show();

3. First, code the win methods. Then, using the method signatures, call the methods.
(a) Method:

public boolean win(){
//returns true if 5 points (global variable), false otherwise

if (points »>= 5)
return true ;

else
return _ false :
¥
Call:
boolean W - win();
if(W == true)

Toast.makeText(getApplicationContext(), "Win!",
Toast.LENGTH_SHORT).show();

—

CISSOIS

beats paper

/S'

S P1

R

P1

P1
Tie

Tie

Tie

P2
P2
P2

4. This method takes two chars, one for each player and using Rock, Paper, Scissors rules, displays a message
for the winner. Fill in the blanks to make the method functional.

public void rockPaperScissorsWin(char pl, char p2) {
int winner = 2;
if (pl == 'r' && p2 == ! ")
winner =
else if (pl
winner =
else 1f (pl
winner =
else if (pl
winner =
if (winner ==)
Toast.makeText (getApplicationContext (), "Player 1 Wins", Toast.LENGTH SHORT) .show();
} else i1f (winner == 2) |
Toast.makeText (getApplicationContext (), " ", Toast.LENGTH SHORT) .show();
| else /|
Toast.makeText (getApplicationContext (), "Tie", Toast.LENGTH SHORT) .show();

.

's' && p2 == " ")

et]

el |

e
)

el |

I
=T R I

d

E

@

e

M

I

I

-

}

4. This method takes two chars, one for each player and using Rock, Paper, Scissors mm
for the winner. Fill in the blanks to make the method functional.
R

public wvoid rockPaperScissorsWin(char pl, char p2) | S P1

int winner = 2;

if (pl == 'r' && p2 == ! ") S P Pl
winner = 1;

else if (pl == 's' && p2 == 1 ") P R IDl
winner = 1; .

else if (pl == 'p' && p2 == 1! ") R R Tie
winner = 1; .

else if (pl == p2) S S Tie
winner = (; .

if (winner ==) { P P Tie
Tocast.makeText (getApplicationContext (), "Player 1 Wins", Toast.

| else i1if (winner == 2) | R P P2
Toast.makeText (getApplicationContext (), " ", Toast

l else { S R P2
Toast.makeText (getApplicationContext (), "Tie", TDast.LENGTﬂ_SHCID S P2

}

4. This method takes two chars, one for each player and using Rock, Paper, Scissors mm
for the winner. Fill in the blanks to make the method functional.
R

public wvoid rockPaperScissorsWin(char pl, char p2) | S P1

int winner = 2;

if (pl == 'r' §& p2 == ' S 1) S P P1
winner = 1;

else if (pl == 's' && p2 == 1 9 ") P R Pl
winner = 1; .

else if (pl == 'p' && p2 == 1! F R R Tie
winner = 1; .

else if (pl == p2) S S Tie
winner = (; .

if (winner == __1_} { P P Tie
Tocast.makeText (getApplicationContext (), "Player 1 Wins", Toast.

| else i1if (winner == 2) | R P P2
Toast.makeText (getApplicationContext (), "Plaver 2 Wins", Toast

} else | S R P2
Toast.makeText (getApplicationContext (), "Tie", Toast.LENGTH SHC P S P2

}

X[X

O

10]10]

Tic Tac Toe
Win

10](1])

10]12]

1][0]

[1][1]

[1][2]

[2][0]

[2][1]

[2][2]

- - - - - - - Iy P o i . 5 - 4
[are T Iy [lsTa N Lﬁl =] (] r STy s iy F i ooy T Ao
3

|
! . 115 ¢) £ i £ . =5
£ A Ll et ¥ 1A Bl L* - 4 LIRS L W -~ £ L F g LA L d oD idhd L Cd L o op . L L L= LA L hd e e O =

int winner

=
rar=1
L

= []=
if (board[0] [0] == board[(l][1l] && board[0][0] == board[(0][Z2] && board[0][C] != 0)
winner = board[0][0];
else if (board[1][0] == board[l][1l] && board[][] == board[l][Z] && board[1l][0]
winner = board[1][0];
else if (board[Z][0] == board[Z][1l] && board[][] == board[Z][Z] && board[][
winner = board[Z][0];

[0110] |[0][1] [O][2}
[1]10] |[1](1][1][2]
[2][0] | [2][1]}[2][2]

ey - .
¥ - 3 k= o

. I L ~ =
| | 2 / E —
I . W e L = L =L -V i L L P M i P i g Lid L T g * -4 L LIE U W I il L L

int winner.¥
if (board[0]]

0;
0

] == board[(0] [1] && board[0][0] == board[(0] [Z2] && board[0][C] != 0)
winner = board[0][0];
else if (board[1l][0] == board[1l][1l] && huard[;Lj[_Qj == board[1l] [Z] && board[1l] [0]
winner = board[11[0]1;
else if (board[Z][0] == board[Z][1l] && board[][] == board[Z][Z] && board[][
winner = board[Z2][0];

10]10] |[0]{1] [O][2]
[1]10] |[1][1]) [1)[2]
[2][0] | [2][1]}[2][2]

ey
_— '
—~

int winner = 0;

if (board[0][0] == board[0][1l] && board[0][0] == board[0][2] && board[0][0] != 0)
winner = board[0][0];

else if (board[1l][0] == board[1l][1l] && huard[:l][O] == board[1l][Z] && board[1l][0] != 0)
winner = boardl11[01; -

lse if (board[Z][0] == board[Z2][1l] && hcard[l] [_O] == board[2] [2] && hoard[z_] [Q] = 0)
winner = board[Z2][0];

10]10] | [0][1] [O][2]
[1]10] |[1]{1]) (1)[2]
[2]10] | [2][1] [2][2]

public void win() {

P
P T q = e T Py om] = o Py - = oy e gy
] ¥ | T L LS r Lol O O, T A i S IS oyualcT, P i L NoOLds S L N o

int winner = 0;

if (board[0][0] == board[0][l] && board[0][0] == board[0][2] && board[0][0] !'= 0)
winner = board[0][0];
else if (board[1l][0] == board[1l][1l] && board[][] == beoard[1][2] && beoard[1][0] != 0)
winner = board[1][0];
else if (board[Z][0] == board[Z][l] && board[][] == board[2][2] && board[][] != 0)
winner = board[2][0];
else if (board[(0][0] == beoard[1l][0] && board[][] == board[2][0] && beard[][1 != 0)
winner = board[0][0];
else if (board[(][l] == board[1][l] && board[][] == board[2][1] && board[][] != 0)
= [11 1:
else if (board[(0][Z] == board[l][2] && board[][] == board[2][2] && board[][] != 0)
winner = board[0][2];
(board[0] [0] == board[l][l] && board[l][1l] == board[][] && board[1][1] != 0)
winner = board[1][1];
else if (board[(0][2Z] == board[l][1l] && beoard[l][1l] == board[][] && beoard[0][2] != 0)
winner = beoard[0][2];
else if (board[][] != 0 && board[[] != 0 && board[][] != 0 &&
board[1] [0] != 0 && board[l][1l] !'= 0 && board[1][2] !'= 0 &&
board[][] != 0 && board[][] '= 0 && board[][] !'= 0)
winner = 3;
if (winner == 1) {
Toast.makeText (getApplicationContext (), " ", Toast.LENGTH SHORT) .show();
} alsae if (winner == 2) |
Toast. (getApplicationContext (), ™ ", Toast.LENGTH SHORT).show();
l else if | == 3) |

Toast.makeText (getApplicationContext (), "Cat's game", Toast. } .show();:

}

Another way

public [int lwin() | that | could

fS/board [x](y] heolds 0 if empty,; 1 if X holds square, 2Z 1if O holds sgquare have«uadedit
int winner = 0;
if (board[0][0] == board[0][1l] && board[0][0] == board[0][2] && board[0][0] != 0)

winner = board[0][0];
else if (board[1][0] == board[1l][1] && board[_][] == board[1l][Z2] && board[1l] [0] != 0)

winner = board[1][0];
else if (board[Z2] [0] == board[Z2][1l] && beoard[][] == beard[2][2] && board[][] !'= 0)

winner = board[2] [0];
else if (board[0][0] == board[1l][0] && board[][1 == beoard[2][0] && board[][1 !'= 0)

winner = board[0][0];
else if (board[0][1l] == board[1l][1l] && beoard[][1 == beoard[2][1l] && board[][1 !'= 0)

= [I 1:

else if (board[0][2] == board[1l][2] && board[_][1 == board[Z][Z2] && board[_][1 != 0)

winner = board[0][2];

(board[0] [0] == board[1][1] && board[1l][1l] == board[][] && board[1][1] != 0)

winner = board[1][1]:
else if (board[0][2] == board[1l][1l] && beoard[1l][1l] == beoard[][] && beoard([0][2] != 0)

winner = board[0] [2];

//cat's game

else if (board[][1 != 0 && board[][] != 0 && board[_][1 != 0 &s&
board[1]1[0] != 0 && board[1][1l] != 0 && board[1][2] != 0 && What four values
board[][] != 0 && board[_][] != 0 && board[_1[__] != 0) would be returned?

winner = 3;

What do they each

return winnsr;
} How would

mean?

you call this?

