
Algorithm Speed
Efficiency and Big Oh notation

Algorithm

• A series of steps to complete a task
• Eg: IKEA assembly instructions, computer

program, flowchart, recipe to bake a cake
• Cornerstone of computer science; a break-

though in an algorithm often means a
radical change in the industry

PageRank: Took search
results and ordered them

Google worth
$632 billion

in 2020

Problem:
The teacher needs to
hand out a set of
assignments, one to
each student.

One of the big
considerations is
the time it will take
to complete.

That is related to
to the efficiency of
the algorithm.

How will
we hand
out the
papers?

Because time
(seconds or nanoseconds)
is hardware dependant,
we measure an algorithm in the
number of operations it takes.

The number of operations depends
on the size of the data set.

In this case, the “data set” is the
class size.

Thus, we will measure it in terms
of n, which will be the class size.

Later this lesson, n will be the
array size.

1

Start at one corner,
Go up and down the rows,
Handing out the paper one by one.

Algorithm

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

To pass out
one by one…
= n
= 30

2

Hand out one pile to each row
Each student passes the pile back.

Algorithm

1 2 3 4 5 6

2

3

4

5

1 2 3 4 5 6

2

3

4

5

1

Count of Actions

1 2 3 4 5 6

2

3

4

5

2

Count of Actions

1 2 3 4 5 6

2

3

4

5

3

Count of Actions

1 2 3 4 5 6

2

3

4

5

4

Count of Actions

1 2 3 4 5 6

2

3

4

5

5

Count of Actions

1 2 3 4 5 6

2

3

4

5

6

Count of Actions

1 2 3 4 5 6

2

3

4

5

7

Count of Actions

1 2 3 4 5 6

2

3

4

5

8

Count of Actions

1 2 3 4 5 6

2

3

4

5

9

Count of Actions

1 2 3 4 5 6

2

3

4

5

10

Count of Actions

1 2 3 4 5 6

2

3

4

5

11

Count of Actions

1 2 3 4 5 6

2

3

4

5

One to each row

n/5 rows + (n/6) pass back
= 6 + 5
= 11

11

Count of Actions

3

Throw the papers in the air
The student shuffle in to grab them

Algorithm

1

2

3

4

Throw in the air….
= n/4
= 8 + time to shuffle out….
= 8+ n*20 ?!?
= 608

Additional
considerations…
It’s chaos….

4

Take one yourself.
Find two people who don’t
have the sheet, give each of
them half the pile.

Algorithm

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30

1

1
Count of Actions

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30

1

2
Count of Actions

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30

1

3
Count of Actions

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30

1

4
Count of Actions

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30

1

5
Count of Actions

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30

Divide in half,
=log n
= 5

5
Count of Actions

Big Oh Notation

• A way of measuring algorithm speed
• Uses a mathematical expression for the total number of

operations that will be needed, based on the array size
• Meaning of the pieces:

• O = order
• n = number of elements in the array

• One loop is O(n)
• One loop inside another is O(n2)

for (int i = 0 ; i < DaysOfWeek.length ; i++)

{

System.out.println (DaysOfWeek [i]);

}

What
speed is

this?

Let’s say the array has 8 values.
array.length is 8.

The loop
runs 8
times.

Tracing the values of i

for (int i = 0 ; i < array.length ; i++)

{

System.out.println (array [i]);

}

Let’s say the array has 8 values.
array.length is 8.

The loop
runs 8
times.

Tracing the values of i

for (int i = 0 ; i < array.length ; i++)

{

System.out.println (array [i]);

}

O(n)

double min = price [0];

for (int i = 1 ; i < price.length ; i++)

{

if (min > price [i])

min = price [i];

}

System.out.println ("The lowest price is: $" + min);

double min = price [0];

for (int i = 1 ; i < price.length ; i++)

{

if (min > price [i])

min = price [i];

}

System.out.println ("The lowest price is: $" + min);

O(n)

for (int i = 0 ; i < a.length - 1 ; i++)

{

for (int j = 0 ; j < a.length - 1 - i ; j++)

{ // compare the two neighbours

if (a [j + 1] < a [j])

{ //swap the neighbours if necessary

int temp = a [j];

a [j] = a [j + 1];

a [j + 1] = temp;

}

}

}

The inner
loop runs
roughly n

times.

The outer loop
runs roughly n

times

Thus, this
code is run
n*n times

Let’s say the array has 8 values.
array.length is 8.

for (int i = 0 ; i < a.length - 1 ; i++)

{

for (int j = 0 ; j < a.length - 1 - i ; j++)

{ // compare the two neighbours

if (a [j + 1] < a [j])

{ //swap the neighbours if necessary

int temp = a [j];

a [j] = a [j + 1];

a [j + 1] = temp;

}

}

} The inner
loop runs

roughly 64
times.

Tracing the values of i and j

Let’s say the array has 8 values.
array.length is 8.

for (int i = 0 ; i < a.length - 1 ; i++)

{

for (int j = 0 ; j < a.length - 1 - i ; j++)

{ // compare the two neighbours

if (a [j + 1] < a [j])

{ //swap the neighbours if necessary

int temp = a [j];

a [j] = a [j + 1];

a [j + 1] = temp;

}

}

} The inner
loop runs

roughly 64
times.

Tracing the values of i and j

O(n2)

Algorithm speeds
(in order from fastest to slowest)

1.O(1), constant time
2.O(logn), logarithmic time
3.O(n), linear time
4.O(n logn)
5.O(n2), quadratic time
6.O(n3), cubic time
7.O(n4)
8.O(2n), exponential time

Where would
O(n2 logn) go?

Algorithm speeds
(in order from fastest to slowest)

1.O(1), constant time
2.O(logn), logarithmic time
3.O(n), linear time
4.O(n logn)
5.O(n2), quadratic time
6.O(n3), cubic time
7.O(n4)
8.O(2n), exponential time

Where would
O(n2 logn) go?

Speed Algorithms

O(1) Swap, add, finding the length

O(log n) Binary search

O(n) print, min, max, sum, average,
delete, linear search, Bin sort

O(n logn) Quicksort, Mergesort

O(n2) Selection sort, Bubblesort

The Grade 11 algorithms and their speeds:

How fast is the
min algorithm?

How fast is the
swap

algorithm?

How fast is the
min algorithm?

O(n)

How fast is the
swap

algorithm?

linear

How fast is the
min algorithm?

O(n)

How fast is the
swap

algorithm? O(1)

linear

Constant
time

N Cray – great hw,

0(n^3) – awful sw

TRS-80 – bad hw,

O(n) – great sw

10 0.000003 sec 0.2 sec

100

1000

2500

10,000

100,000

1,000,000

N Cray – great hw,

0(n^3) – awful sw

TRS-80 – bad hw,

O(n) – great sw

10 0.000003 sec 0.2 sec

100 0.003 sec 2.0 sec

1000

2500

10,000

100,000

1,000,000

N Cray – great hw,

0(n^3) – awful sw

TRS-80 – bad hw,

O(n) – great sw

10 0.000003 sec 0.2 sec

100 0.003 sec 2.0 sec

1000 3 sec 20 sec

2500

10,000

100,000

1,000,000

N Cray – great hw,

0(n^3) – awful sw

TRS-80 – bad hw,

O(n) – great sw

10 0.000003 sec 0.2 sec

100 0.003 sec 2.0 sec

1000 3 sec 20 sec

2500 47 sec 49 sec

10,000

100,000

1,000,000

N Cray – great hw,

0(n^3) – awful sw

TRS-80 – bad hw,

O(n) – great sw

10 0.000003 sec 0.2 sec

100 0.003 sec 2.0 sec

1000 3 sec 20 sec

2500 47 sec 49 sec

10,000 50 min 3.25 min

100,000

1,000,000

N Cray – great hw,

0(n^3) – awful sw

TRS-80 – bad hw,

O(n) – great sw

10 0.000003 sec 0.2 sec

100 0.003 sec 2.0 sec

1000 3 sec 20 sec

2500 47 sec 49 sec

10,000 50 min 3.25 min

100,000 34.7 days 32.5 min

1,000,000

N Cray – great hw,

0(n^3) – awful sw

TRS-80 – bad hw,

O(n) – great sw

10 0.000003 sec 0.2 sec

100 0.003 sec 2.0 sec

1000 3 sec 20 sec

2500 47 sec 49 sec

10,000 50 min 3.25 min

100,000 34.7 days 32.5 min

1,000,000 95 5.4

N Cray – great hw,

0(n^3) – awful sw

TRS-80 – bad hw,

O(n) – great sw

10 0.000003 sec 0.2 sec

100 0.003 sec 2.0 sec

1000 3 sec 20 sec

2500 47 sec 49 sec

10,000 50 min 3.25 min

100,000 34.7 days 32.5 min

1,000,000 95 years 5.4 hours

The Moral of Bentley’s Example

Fast hardware cannot
compensate for a slow

algorithm.

