Algorithm Speed

Efficiency and Big Oh notation

Algorithm

* A series of steps to complete a task

* Eg: IKEA assembly instructions, computer
program, flowchart, recipe to bake a cake

* Cornerstone of computer science; a break-
though in an algorithm often means a
radical change in the industry

PageRank: Took search SR
$632 billion

results and ordered them in 2020

A_M. TURING CENTENARY CELEBRATION WEBCAST

A M. TURING AWARD WINNERS BY...
ALPHABETICAL LISTING YEAR OF THE AWARD RESEARCH SUBJECT

CHRONOLOGICAL LISTING OF A.M. TURING AWARD
WINNERS

* person is deceased

(2019) (2000) (1081)
Catmull, Edwin E Yao, Andrew Chi-Chih Codd, Edgar F. ("Ted") *

(1999) (1980)
Brooks, Frederick ("Fred") Hoare, C. Antony ("Tony™) R
(1998)

Gray, James ("Jim") 1

Nicholas *

(1997) (1078)
E vd. Robert (Bob) W #

ngelbart, Douglas *

(1996) (1977)

: Pnueli, Amir * Backus, John *
(2016)

erners-Lee, Tim (1995) (1976)
Blum, Manuel Rabin, Michael O.

(2015)
o Scott, Dana Stewart

Diffie, Whitfield
Hellman, Martin

(2014)

Stonebraker. Michael Simon, Herbert ("Herb"} Alexander *

Problem:

The teacher needs to
hand out a set of
assignments, one to
each student.

How will
we hand
out the

papers?

One of the big
considerations is
the time it will take
to complete.

That is related to
to the efficiency of
the algorithm.

Because time

(seconds or nanoseconds)

is hardware dependant,

we measure an algorithm in the
number of operations it takes.

The number of operations depends
on the size of the data set.

In this case, the “data set” is the
class size.

Thus, we will measure it in terms
of n, which will be the class size.

Later this lesson, n will be the
array size.

Start at one corner,
Go up and down the rows,
Handing out the paper one by one.

£l Kl K1 K1 K K3

RA KR ENERI RS R O
onhe by one...

BREEES
—30

DEEBEBER

EEEBBEn

o

Hand out one pile to each row
Each student passes the pile back.

Count of Actions

Count of Actions

Count of Actions

Count of Actions

Count of Actions

Count of Actions

Count of Actions

Count of Actions

Count of Actions

Count of Actions

Count of Actions

Count of Actions

One to each row

n/5 rows + (n/6) pass back
=6+5
=11

Throw the papers in the air
The student shuffle in to grab them

Throw in the air....

=n/4

= 8 + time to shuffle out....
=8+ n*207?!?

= 608

Additional
considerations...
It’s chaos....

4

Take one yourself.

Find two people who don’t
have the sheet, give each of
them half the pile.

Count of Actions

Divide in half,

Big Oh Notation

* A way of measuring algorithm speed
* Uses a mathematical expression for the total number of
operations that will be needed, based on the array size
* Meaning of the pieces:
* O =order
* n = number of elements in the array
* One loop is O(n)
* One loop inside another is O(n2)

What
speed is

this?

for (int 1 = 0 ; 1 < DaysOfWeek.length ; 1++)

{
System.out.println (DaysOfWeek [1]);

Let’s say the array has 8 values.
Tracing the values of i array.length is 8.

ABCDEFGH I o | .
i 1 2 3 4 5 6 7 8 J;:'or (int 1 = 0 ; 1 < array.length ; 1i++)

System.out.println (array [1]);

}

The loop

runs 8
times.

Let’s say the array has 8 values.
Tracing the values of i array.length is 8.

ABCDEFGH |

{

System.out.println (array [1]);

}

The loop

runs 8
times.

double min = price [0];
for (int 1 = 1 ; 1 < price.length ; 1i++)
{
1f (min > price [1])
min = price [1];
}

System.out.println ("The lowest price is: $" + min);

double min = price [0];
for (int 1 = 1 ; 1 < price.length ; 1++)
{
if (min > price [i])
min = price [1];
}

System.out.println ("The lowest price is: $" + min);

The outer loop

runs roughly n
times

for (int 1 =0 ; 1 < a.length - 1 ; 1++)
{

for (int 3 = 0 ; j < a.length - 1 - 1 ; J++)
{ // compare the two neighbours

if (a [§ + 1] < a [3]) The inner

{ //swap the neighbours if necessary loop runs
int temp = a [J]; roughly n
a [J] =a [+ 11; times.
a [J + 1] = temp;

Thus, this
\ code is run
) n*n times

Tracing the values of i and j
ABCDEFGH I

O 00 ~NOO O S, WN —

J

J

J

J

J

J

J

J

00N O P WN =

— | — — — — — — —
N (N[N N IN N (NN
W W [W W WW (W w
INESENENENENESES
oo oo ;oo
oo oo oo oo
~ NN NN N NN
00 |00 | 00 |00 |00 | 00 |00 |00

Let’s say the array has 8 values.
array.length is 8.

for (int 1 = 0 ;

{

1 < a.length - 1 ; 1++)

for (int 37 = 0 ; j < a.length - 1 - 1 ; J++)
{ // compare the two neighbours

if (a [J + 1] < a [3])

{ //swap the neighbours if necessary

int temp = a [j];
a [J] = a [J + 11;
a [J + 1] = temp;

) The inner
loop runs

roughly 64
times.

Tracing the values of i and j
ABCDEFGH I

O© 0O ~NOOOLP,, WODN -

J

J

J

J

J

J

J

J

00N O P WN =

— | — — — — — — —
N (N[N N IN N (NN
W W [W W WW (W w
INESENENENENESES
oo oo ;oo
oo oo oo oo
~ NN NN N NN
00 |00 | 00 |00 |00 | 00 |00 |00

Let’s say the array has 8 values.
array.length is 8.

for (int 1 = 0 ;

{

i < a.length - 1 ; 1i++)

for (int j = 0 ; j < a.length - 1 - i ; J++4)
{ // compare the two neighbours

if (a [J + 1] < a [3])

{ //swap the neighbours if necessary

int temp = a [j];
a [J] = a [J + 11;
a [J + 1] = temp;

The inner
loop runs

roughly 64
times.

Algorithm speeds

(in order from fastest to slowest)

1.0(1), constant time
2.0(logn), logarithmic time Where would
3.0(n), linear time O(n* logn) go?
4.0(n logn)

5.0(n?), quadratic time
6.0(n3), cubic time
7.0(n%)

8.0(2"), exponential time

Algorithm speeds

(in order from fastest to slowest)

1.0(1), constant time
2.0(logn), logarithmic time Where would
3.0(n), linear time O(n* logn) go?
4.0(n logn)

5.0(n?), quadratic time
6.0(n3), cubic time
7.0(n%)

8.0(2"), exponential time

N OB WDN -

A B C D E F G H
n O(1) | O(logn)| O(n) | O(nlogn)| O(N"2) O(n"3) O(2*n)
4 1 2 4 8 16 64 16
10 1 3.3219 10| 33.2193 100 1000 1024
16 1 4 16 64 256 4096 65536
100 1| 6.6439 100, 664.386 10000 1000000, 1.26765E+30
1000 11 9.9658| 1000| 9965.78 1000000/ 1000000000, 1.0715E+301
10000 11 13.288| 10000| 132877 100000000 1E+12 #NUM!

The Grade 11 algorithms and their speeds:

Algorithms

O(1) Swap, add, finding the length
O(log n) Binary search

O(n) print, min, max, sum, average,
delete, linear search, Bin sort

O(n logn) Quicksort, Mergesort
O(n?) Selection sort, Bubblesort

How fast is the
min algorithm?

How fast is the
swap
algorithm?

How fast is the
min algorithm?

How fast is the
swap
algorithm?

How fast is the
min algorithm?

How fast is the
swap
algorithm?

Constant
time

Does it really work?

Jon Bentley describes an experiment in Programming Pearls, p. 75.
The problem is to take a list of N real numbers and return the

maximum sum found in any contiguous sublist. For example:

31 (41|59 | 26 |-53 |38 | 97 |-93 |-23 | 84

He describes four algorithms to solve the problem. They are O(ng),
O(n?), O(nlgn), and O(n). To prove that constant factors don'’t
matter much, he deliberately tried to make the constant factors of

the O(n?*) and O(n) algorithms differ by as much as possible.

’ [} win

g— BT

O(n) on a TRS-80 hobbyist | O(n?*) on a Cray supercom-

computer outer

O(ng) algorithm: Cray-1, finely-tuned Fortran, 3.0n° nanoseconds

O(n) algorithm: TRS-80, interpreted Basic, 19.5n milliseconds =
19, 500, 0007 nanoseconds

N

Cray — great hw,
0(n"3) — awful sw

TRS-80 — bad hw,
O(n) — great sw

10

0.000003 sec

0.2 secC

100

1000

2500

10,000

100,000

1,000,000

N Cray — great hw, |TRS-80 — bad hw,
0(n"3) — awful sw |O(n) — great sw

10 0.000003 sec 0.2 sec

100 0.003 sec 2.0 sec

1000

2500

10,000

100,000

1,000,000

N Cray — great hw, |TRS-80 — bad hw,
0(n"3) — awful sw |O(n) — great sw

10 0.000003 sec 0.2 sec

100 0.003 sec 2.0 sec

1000 3 secC 20 sec

2500

10,000

100,000

1,000,000

N Cray — great hw, |TRS-80 — bad hw,
0(n"3) — awful sw |O(n) — great sw

10 0.000003 sec 0.2 sec

100 0.003 sec 2.0 sec

1000 3 secC 20 sec

2500 47sec [49sec |

10,000

100,000

1,000,000

N Cray — great hw, |TRS-80 — bad hw,
0(n"3) — awful sw |O(n) — great sw

10 0.000003 sec 0.2 sec

100 0.003 sec 2.0 sec

1000 3 secC 20 sec

2500 47sec [49sec |

10,000 50 min 3.25 min

100,000

1,000,000

N Cray — great hw, |TRS-80 — bad hw,
0(n"3) — awful sw |O(n) — great sw

10 0.000003 sec 0.2 sec

100 0.003 sec 2.0 sec

1000 3 secC 20 sec

2500 47sec |49sec |
10,000 50 min 3.25 min

100,000 34.7 days 32.5 min

1,000,000

N Cray — great hw, |TRS-80 — bad hw,
0(n"3) — awful sw |O(n) — great sw

10 0.000003 sec 0.2 sec

100 0.003 sec 2.0 sec

1000 3 sec 20 sec

2500 47sec |49sec |

10,000 50 min 3.25 min

100,000 34.7 days 32.5 min

1,000,000 05 5.4

N Cray — great hw, |TRS-80 — bad hw,
0(n"3) — awful sw |O(n) — great sw

10 0.000003 sec 0.2 sec

100 0.003 sec 2.0 sec

1000 3 sec 20 sec

2500 47sec |49sec

10,000 50 min 3.25 min

100,000 34.7 days 32.5 min

1,000,000 95 years 5.4 hours

The Moral of Bentley’s Example

Fast hardware cannot

compensate for a slow
algorithm.

